scholarly journals Sparse convolutional neural network acceleration with lossless input feature map compression for resource‐constrained systems

Author(s):  
Jisu Kwon ◽  
Joonho Kong ◽  
Arslan Munir
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yongchao Ye ◽  
Lingjie Lao ◽  
Diqun Yan ◽  
Rangding Wang

Pitch shifting is a common voice editing technique in which the original pitch of a digital voice is raised or lowered. It is likely to be abused by the malicious attacker to conceal his/her true identity. Existing forensic detection methods are no longer effective for weakly pitch-shifted voice. In this paper, we proposed a convolutional neural network (CNN) to detect not only strongly pitch-shifted voice but also weakly pitch-shifted voice of which the shifting factor is less than ±4 semitones. Specifically, linear frequency cepstral coefficients (LFCC) computed from power spectrums are considered and their dynamic coefficients are extracted as the discriminative features. And the CNN model is carefully designed with particular attention to the input feature map, the activation function and the network topology. We evaluated the algorithm on voices from two datasets with three pitch shifting software. Extensive results show that the algorithm achieves high detection rates for both binary and multiple classifications.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Cheng-Jian Lin ◽  
Chun-Hui Lin ◽  
Shyh-Hau Wang

Deep learning has accomplished huge success in computer vision applications such as self-driving vehicles, facial recognition, and controlling robots. A growing need for deploying systems on resource-limited or resource-constrained environments such as smart cameras, autonomous vehicles, robots, smartphones, and smart wearable devices drives one of the current mainstream developments of convolutional neural networks: reducing model complexity but maintaining fine accuracy. In this study, the proposed efficient light convolutional neural network (ELNet) comprises three convolutional modules which perform ELNet using fewer computations, which is able to be implemented in resource-constrained hardware equipment. The classification task using CIFAR-10 and CIFAR-100 datasets was used to verify the model performance. According to the experimental results, ELNet reached 92.3% and 69%, respectively, in CIFAR-10 and CIFAR-100 datasets; moreover, ELNet effectively lowered the computational complexity and parameters required in comparison with other CNN architectures.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Feng Wang ◽  
Shanshan Huang ◽  
Chao Liang

Sensing the external complex electromagnetic environment is an important function for cognitive radar, and the concept of cognition has attracted wide attention in the field of radar since it was proposed. In this paper, a novel method based on an idea of multidimensional feature map and convolutional neural network (CNN) is proposed to realize the automatic modulation classification of jamming entering the cognitive radar system. The multidimensional feature map consists of two envelope maps before and after the pulse compression processing and a time-frequency map of the receiving beam signal. Drawing the one-dimensional envelope in a 2-dimensional plane and quantizing the time-frequency data to a 2-dimensional plane, we treat the combination of the three planes (multidimensional feature map) as one picture. A CNN-based algorithm with linear kernel sensing the three planes simultaneously is selected to accomplish jamming classification. The classification of jamming, such as noise frequency modulation jamming, noise amplitude modulation jamming, slice jamming, and dense repeat jamming, is validated by computer simulation. A performance comparison study on convolutional kernels in different size demonstrates the advantage of selecting the linear kernel.


2020 ◽  
Vol 64 (2) ◽  
pp. 20507-1-20507-10 ◽  
Author(s):  
Hee-Jin Yu ◽  
Chang-Hwan Son ◽  
Dong Hyuk Lee

Abstract Traditional approaches for the identification of leaf diseases involve the use of handcrafted features such as colors and textures for feature extraction. Therefore, these approaches may have limitations in extracting abundant and discriminative features. Although deep learning approaches have been recently introduced to overcome the shortcomings of traditional approaches, existing deep learning models such as VGG and ResNet have been used in these approaches. This indicates that the approach can be further improved to increase the discriminative power because the spatial attention mechanism to predict the background and spot areas (i.e., local areas with leaf diseases) has not been considered. Therefore, a new deep learning architecture, which is hereafter referred to as region-of-interest-aware deep convolutional neural network (ROI-aware DCNN), is proposed to make deep features more discriminative and increase classification performance. The primary idea is that leaf disease symptoms appear in leaf area, whereas the background region does not contain useful information regarding leaf diseases. To realize this, two subnetworks are designed. One subnetwork is the ROI subnetwork to provide more discriminative features from the background, leaf areas, and spot areas in the feature map. The other subnetwork is the classification subnetwork to increase the classification accuracy. To train the ROI-aware DCNN, the ROI subnetwork is first learned with a new image set containing the ground truth images where the background, leaf area, and spot area are divided. Subsequently, the entire network is trained in an end-to-end manner to connect the ROI subnetwork with the classification subnetwork through a concatenation layer. The experimental results confirm that the proposed ROI-aware DCNN can increase the discriminative power by predicting the areas in the feature map that are more important for leaf diseases identification. The results prove that the proposed method surpasses conventional state-of-the-art methods such as VGG, ResNet, SqueezeNet, bilinear model, and multiscale-based deep feature extraction and pooling.


2021 ◽  
Vol 1 (1) ◽  
pp. 29-31
Author(s):  
Mahmood Haithami ◽  
Amr Ahmed ◽  
Iman Yi Liao ◽  
Hamid Jalab

In this paper, we aim to enhance the segmentation capabilities of DeeplabV3 by employing Gated Recurrent Neural Network (GRU). A 1-by-1 convolution in DeeplabV3 was replaced by GRU after the Atrous Spatial Pyramid Pooling (ASSP) layer to combine the input feature maps. The convolution and GRU have sharable parameters, though, the latter has gates that enable/disable the contribution of each input feature map. The experiments on unseen test sets demonstrate that employing GRU instead of convolution would produce better segmentation results. The used datasets are public datasets provided by MedAI competition.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5569
Author(s):  
Jamil Ahmad ◽  
Bilal Jan ◽  
Haleem Farman ◽  
Wakeel Ahmad ◽  
Atta Ullah

The agriculture sector faces crop losses every year due to diseases around the globe, which adversely affect food productivity and quality. Detecting and identifying plant diseases at an early stage is still a challenge for farmers, particularly in developing countries. Widespread use of mobile computing devices and the advancements in artificial intelligence have created opportunities for developing technologies to assist farmers in plant disease detection and treatment. To this end, deep learning has been widely used for disease detection in plants with highly favorable outcomes. In this paper, we propose an efficient convolutional neural network-based disease detection framework in plum under true field conditions for resource-constrained devices. As opposed to the publicly available datasets, images used in this study were collected in the field by considering important parameters of image-capturing devices such as angle, scale, orientation, and environmental conditions. Furthermore, extensive data augmentation was used to expand the dataset and make it more challenging to enable robust training. Investigations of recent architectures revealed that transfer learning of scale-sensitive models like Inception yield results much better with such challenging datasets with extensive data augmentation. Through parameter quantization, we optimized the Inception-v3 model for deployment on resource-constrained devices. The optimized model successfully classified healthy and diseased fruits and leaves with more than 92% accuracy on mobile devices.


2019 ◽  
Vol 9 (14) ◽  
pp. 2917 ◽  
Author(s):  
Yan Chen ◽  
Chengming Zhang ◽  
Shouyi Wang ◽  
Jianping Li ◽  
Feng Li ◽  
...  

Using satellite remote sensing has become a mainstream approach for extracting crop spatial distribution. Making edges finer is a challenge, while simultaneously extracting crop spatial distribution information from high-resolution remote sensing images using a convolutional neural network (CNN). Based on the characteristics of the crop area in the Gaofen 2 (GF-2) images, this paper proposes an improved CNN to extract fine crop areas. The CNN comprises a feature extractor and a classifier. The feature extractor employs a spectral feature extraction unit to generate spectral features, and five coding-decoding-pair units to generate five level features. A linear model is used to fuse features of different levels, and the fusion results are up-sampled to obtain a feature map consistent with the structure of the input image. This feature map is used by the classifier to perform pixel-by-pixel classification. In this study, the SegNet and RefineNet models and 21 GF-2 images of Feicheng County, Shandong Province, China, were chosen for comparison experiment. Our approach had an accuracy of 93.26%, which is higher than those of the existing SegNet (78.12%) and RefineNet (86.54%) models. This demonstrates the superiority of the proposed method in extracting crop spatial distribution information from GF-2 remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document