scholarly journals A Hierarchical Scheme for Video‐Based Person Re‐identification Using Lightweight PCANet and Handcrafted LOMO Features

2021 ◽  
Vol 30 (2) ◽  
pp. 289-295
Author(s):  
Li Youjiao ◽  
Zhuo Li ◽  
Li Jiafeng ◽  
Zhang Jing
Keyword(s):  
Author(s):  
Chaoqing Wang ◽  
Junlong Cheng ◽  
Yuefei Wang ◽  
Yurong Qian

A vehicle make and model recognition (VMMR) system is a common requirement in the field of intelligent transportation systems (ITS). However, it is a challenging task because of the subtle differences between vehicle categories. In this paper, we propose a hierarchical scheme for VMMR. Specifically, the scheme consists of (1) a feature extraction framework called weighted mask hierarchical bilinear pooling (WMHBP) based on hierarchical bilinear pooling (HBP) which weakens the influence of invalid background regions by generating a weighted mask while extracting features from discriminative regions to form a more robust feature descriptor; (2) a hierarchical loss function that can learn the appearance differences between vehicle brands, and enhance vehicle recognition accuracy; (3) collection of vehicle images from the Internet and classification of images with hierarchical labels to augment data for solving the problem of insufficient data and low picture resolution and improving the model’s generalization ability and robustness. We evaluate the proposed framework for accuracy and real-time performance and the experiment results indicate a recognition accuracy of 95.1% and an FPS (frames per second) of 107 for the framework for the Stanford Cars public dataset, which demonstrates the superiority of the method and its availability for ITS.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4374
Author(s):  
Jose Bernardo Martinez ◽  
Hector M. Becerra ◽  
David Gomez-Gutierrez

In this paper, we addressed the problem of controlling the position of a group of unicycle-type robots to follow in formation a time-varying reference avoiding obstacles when needed. We propose a kinematic control scheme that, unlike existing methods, is able to simultaneously solve the both tasks involved in the problem, effectively combining control laws devoted to achieve formation tracking and obstacle avoidance. The main contributions of the paper are twofold: first, the advantages of the proposed approach are not all integrated in existing schemes, ours is fully distributed since the formulation is based on consensus including the leader as part of the formation, scalable for a large number of robots, generic to define a desired formation, and it does not require a global coordinate system or a map of the environment. Second, to the authors’ knowledge, it is the first time that a distributed formation tracking control is combined with obstacle avoidance to solve both tasks simultaneously using a hierarchical scheme, thus guaranteeing continuous robots velocities in spite of activation/deactivation of the obstacle avoidance task, and stability is proven even in the transition of tasks. The effectiveness of the approach is shown through simulations and experiments with real robots.


2019 ◽  
Vol 70 (21) ◽  
pp. 6195-6201 ◽  
Author(s):  
Silvia Lechthaler ◽  
Pierluigi Colangeli ◽  
Moira Gazzabin ◽  
Tommaso Anfodillo

Abstract The structure of leaf veins is typically described by a hierarchical scheme (e.g. midrib, 1st order, 2nd order), which is used to predict variation in conduit diameter from one order to another whilst overlooking possible variation within the same order. We examined whether xylem conduit diameter changes within the same vein order, with resulting consequences for resistance to embolism. We measured the hydraulic diameter (Dh), and number of vessels (VN) along the midrib and petioles of leaves of Acer pseudoplatanus, and estimated the leaf area supplied (Aleaf-sup) at different points of the midrib and how variation in anatomical traits affected embolism resistance. We found that Dh scales with distance from the midrib tip (path length, L) with a power of 0.42, and that VN scales with Aleaf-sup with a power of 0.66. Total conductive area scales isometrically with Aleaf-sup. Embolism events along the midrib occurred first in the basipetal part and then at the leaf tip where vessels are narrower. The distance from the midrib tip is a good predictor of the variation in vessel diameter along the 1st order veins in A. pseudoplatanus leaves and this anatomical pattern seems to have an effect on hydraulic integrity since wider vessels at the leaf base embolize first.


2017 ◽  
Vol 9 (2) ◽  
pp. 99-104 ◽  
Author(s):  
David Watson ◽  
Kasey Stanton

We explore the implications of a hierarchical structure, consisting of (a) the higher order dimensions of nonspecific Positive Activation and Negative Activation and (b) multiple specific negative affects (e.g., fear, sadness, and anger) and positive affects (e.g., joviality, self-assurance, and attentiveness) at the lower level. Emotional blends of the same valence (e.g., simultaneously experiencing both fear and sadness) are an essential part of this structure and form the basis of the higher order Negative and Positive Activation dimensions. Mixed cross-valence emotions (e.g., feeling both nervous and alert) are not central to this hierarchical scheme but are compatible with it. We examine the frequency of pure emotional states, same-valence emotional blends, and cross-valence mixed emotions in a large momentary mood sample.


Sign in / Sign up

Export Citation Format

Share Document