Risk assessment and minimization of voltage level violations in distribution systems

Author(s):  
C. Oliveira ◽  
A. Meffe ◽  
R. Guimaraes

2020 ◽  
Vol 192 ◽  
pp. 110286 ◽  
Author(s):  
Amir Mohammadi ◽  
Maryam Faraji ◽  
Ali Asghar Ebrahimi ◽  
Sepideh Nemati ◽  
Ali Abdolahnejad ◽  
...  


2019 ◽  
Vol 5 (8) ◽  
pp. 1371-1379
Author(s):  
Quanli Liu ◽  
Jiali Gao ◽  
Guiwei Li ◽  
Hui Tao ◽  
Baoyou Shi

Heavy metals easily accumulate and re-release in drinking water distribution systems (DWDS), which greatly affects the safety of drinking water.



2018 ◽  
Vol 19 (3) ◽  
pp. 899-907 ◽  
Author(s):  
Wilmer P. Cantos ◽  
Ilan Juran

Abstract Metropolitan governments and water operators are continuously facing the ever-growing challenges of evaluating the risks and optimizing investment in the rehabilitation of the buried aging infrastructure of water distribution systems (WDS). Proper asset management and efficient rehabilitation planning require monitoring, condition assessment, degradation risk analysis and a data-based model for degradation forecasting to support investment decision-making and significantly reduce the infrastructure rehabilitation cost. This paper presents a statistical and stochastic spatial data analysis of failure records of the WDS of the City of Wattrelos, France. The research objective is to develop and demo-illustrate the application of an operator's experience-based Risk Assessment Method (RAM) for network micro-zone prioritization of rehabilitation/replacement works to optimize preemptive asset management. The data used is a 74-year historical dataset from Wattrelos, France. The database includes approximately 424 observed failures for the period of 1991–2004. The data analysis demonstrates that understanding and using stochastic modeling to characterize the pattern of relationship between Failure Rate (FR), Age (T) and the Probability (or Risk) of exceeding a specific Failure Rate (Pr(FR)) of a micro-zone can effectively support the operator's assessment, risk management and prioritization in the maintenance and rehabilitation of the WDS.



2013 ◽  
Vol 353-356 ◽  
pp. 2957-2960
Author(s):  
Jia Sun ◽  
Guo Ping Yu

In study of a series of damages to water distribution systems caused by urban land subsidence, risk assessment modeling is necessary for risk management especially in Mega-cities. First of all, the Catastrophe Theory was employed to analyze the Catastrophe mechanism, and a function catastrophe simulation model was established accordingly to get the vulnerability index of water distribution system. Secondly, risk entropy model was used to analyze the risk of pipe network suffering the land subsidence with the disorder and uncertainty features according to risk theory. Finally, to get the risk index the water distribution system of Guangzhou city was taken to the risk assessment model utilizing the level of land subsidence identified by the dimensional analytical method. The results showed that the risk of land subsidence under the city water distribution system security upgrade is feasible to provide a risk assessment of the strategic decision-making model.



2008 ◽  
Vol 58 (3) ◽  
pp. 571-577 ◽  
Author(s):  
J. F. Loret ◽  
M. Jousset ◽  
S. Robert ◽  
G. Saucedo ◽  
F. Ribas ◽  
...  

Free-living amoebae have been detected in a large number of man-made water systems, including drinking water distribution systems. Some of these amoebae can host amoebae-resisting bacteria, and thus act potentially as reservoirs and vehicles for a number of pathogens. The objectives of this study were to characterize the amoebae and amoebae-resisting bacteria present in different raw waters used for drinking water production, and to assess the efficiency of different treatments applied for drinking water production in removing or inactivating these amoebae. The preliminary results of this study confirm the presence of amoebae and amoebae-resisting bacteria in raw waters used for drinking water production. Due to their capacity to encyst, most of these amoebae are extremely resistant to disinfection processes. In these conditions, preventing the dissemination of these micro-organisms through drinking water will mainly require their physical removal by clarification and filtration processes. The particular hazard that amoebae-resisting bacteria represent in drinking water production should be taken into account in any risk assessment conducted in the framework of a water safety plan, and control strategies based on physical removal rather than disinfection should be adopted where necessary.



Author(s):  
J. Karppanen ◽  
T. Kaipia ◽  
A. Mattsson ◽  
P. Nuutinen ◽  
Jaehan Kim ◽  
...  


Author(s):  
James Mihell ◽  
Chad Augustine ◽  
Zaheed Hasham ◽  
Keith Leewis

Unlike the circumstance associated with transmission pipelines, where variables that are attributes of risk are typically widely available in GIS systems or in other databases that are geo-referenced to linear assets, risk data for distribution systems are not typically linearly referenced to what is essentially a network system. Therefore the manner in which risk is calculated and displayed for distribution systems must differ significantly from the way these functions are performed on transmission pipelines. In distribution systems, failure (defined as the loss of containment) and the contributors to the likelihood of failure, is often highly correlated to system-specific circumstances, such as type of material used, installation era, and operating environment. These correlations between cause-and-effect as they relate to failure likelihood in distribution systems are not widely recognized on a universal basis, such as they might be in transmission pipeline environments, but are typically unique to each operating system. Because system data for distribution networks is not typically available in a manner that can be linearly geo-referenced to pipeline coordinates the way it is for transmission systems, the convention of mapping risk to pipeline dynamic segments as a function of risk attributes that exist within those dynamic segments is not achievable for distribution systems the way that it is for transmission systems. Therefore, the most effective strategy for performing risk assessments in distribution systems is to create a database in which existing incident data can be correlated to system attributes, and then to use those correlations to create cause-and-effect relationships between system attributes and failure likelihood. Consequences are characterized in terms of the operating environment (e.g., wall-to-wall, residential, etc.), leak magnitude, type of facility (mains vs. service lines), and special mitigating or exacerbating factors, such as availability of excess flow valves, or the presence of inside meters. A risk assessment methodology has been developed that accommodates the above constraints and that meets the stated objectives, and which is well-suited to the distribution system data infrastructure that is typical of most operators. Because the risk assessment approach leverages existing databases and incident reporting structures, it lends itself to automation, and re-evaluation on a regular basis. Reporting is facilitated by a ‘heat map’, which provides immediate insight as to the drivers of risk for each system sub-group having similar design, materials, and operating characteristics.



Sign in / Sign up

Export Citation Format

Share Document