Dynamic power splitting scheme for DF relaying‐based SWIPT networks with direct link

2019 ◽  
Vol 55 (25) ◽  
pp. 1340-1343 ◽  
Author(s):  
Yingting Liu ◽  
Yinghui Ye ◽  
Haiyang Ding
2020 ◽  
Vol 19 (6) ◽  
pp. 4307-4320 ◽  
Author(s):  
Steven Kisseleff ◽  
Symeon Chatzinotas ◽  
Bjorn Ottersten

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1525
Author(s):  
Yeonggyu Shim ◽  
Wonjae Shin

This paper considers simultaneous wireless information and power transfer (SWIPT) systems in the two-user Gaussian multiple access channel (G-MAC). In SWIPT systems, for a transmit signal each transmitter consists of an information-carrying signal and energy-carrying signal. By controlling a different set of the power for the information transmission and power for the energy transmission under a total power constraint, the information sum-rate and energy transmission rate can be achieved. As the information carrying-to-transmit power ratio at transmitters and the information sum-rate increases, however, the energy transmission rate decreases. In other words, there is a fundamental trade-off between the information sum-rate and the energy transmission rate according to the power-splitting ratio at each transmitter. Motivated by this, this paper proposes an optimal power-splitting scheme that maximizes the energy transmission rate subject to a minimum sum-rate constraint. In particular, a closed-form expression of the power-splitting coefficient is presented for the two-user G-MAC under a minimum sum-rate constraint. Numerical results show that the energy rate of the proposed optimal power-splitting scheme is greater than that of the fixed power-splitting scheme.


2020 ◽  
Vol 43 ◽  
pp. 101169
Author(s):  
Jinlong Wang ◽  
Gang Wang ◽  
Bo Li ◽  
Zihuai Lin ◽  
Hailong Wang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tianci Wang ◽  
Guangyue Lu ◽  
Yinghui Ye ◽  
Yuan Ren

This paper investigates an energy-constrained two-way multiplicative amplify-and-forward (AF) relay network, where a practical nonlinear energy harvesting (NLEH) model is equipped at the relay to realize simultaneous wireless information and power transfer (SWIPT). We focus on the design of dynamic power splitting (DPS) strategy, in which the PS ratio is able to adjust itself according to the instantaneous channel state information (CSI). Specifically, we first formulate an optimization problem to maximize the outage throughput, subject to the NLEH. Since this formulated problem is nonconvex and difficult to solve, we further transfer it into an equivalent problem and develop a Dinkelbach iterative method to obtain the corresponding solution. Numerical results are given to verify the quick convergence of the proposed iterative method and show the superior outage throughput of the designed DPS strategy by comparing with two peer strategies designed for the linear energy harvesting (LEH) model.


2013 ◽  
Vol 61 (9) ◽  
pp. 3990-4001 ◽  
Author(s):  
Liang Liu ◽  
Rui Zhang ◽  
Kee-Chaing Chua

2021 ◽  
Author(s):  
Quy-Huu Tran ◽  
Ca V Phan ◽  
Quoc-Tuan Vien

Abstract This paper investigates a relay assisted simultaneous wireless information and power transfer (SWIPT) for downlink in cellular systems. Cooperative non-orthogonal multiple access (C-NOMA) is employed along with power splitting (PS) protocol to enable both energy harvesting (EH) and information processing (IP). A downlink model consists of a base station (BS) and two users is considered, in which the near user (NU) is selected as a relay to forward the received signal from the BS to the far user (FU). Maximum ratio combining is then employed at the FU to combine both the signals received from the BS and NU. Closed form expressions of outage propability (OP), throughput, ergodic rate and energy efficiency (EE) are firstly derived for the SWIPT based C-NOMA considering both scenarios of with and without direct link between the BS and FU. The impacts of EH time, EH efficiency, power-splitting ratio, source data rate and distance between different nodes on the performance are then investigated. The simulation results show that the C-NOMA with direct link achieves an outperformed performance over C-NOMA without direct link. Moreover, the performance of C-NOMA with direct link is also higher than that for OMA. Specifically, (i) the outage probability for C-NOMA in both direct and relaying link cases is always lower than that for OMA. (ii) the outage probability, throughput and ergodic rate vary according to β , (iii) the EE of both users can obtain in SNR range of from -10 to 5 dB and it decreases linearly as SNR increases. Numerical results are provided to verify the findings.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5692
Author(s):  
Van-Duc Phan ◽  
Tan N. Nguyen ◽  
Anh Vu Le ◽  
Miroslav Voznak

In this paper, we study the physical layer security for simultaneous wireless information and power transfer (SWIPT)-based half-duplex (HD) decode-and-forward relaying system. We consider a system model including one transmitter that tries to transmit information to one receiver under the help of multiple relay users and in the presence of one eavesdropper that attempts to overhear the confidential information. More specifically, to investigate the secrecy performance, we derive closed-form expressions of outage probability (OP) and secrecy outage probability for dynamic power splitting-based relaying (DPSBR) and static power splitting-based relaying (SPSBR) schemes. Moreover, the lower bound of secrecy outage probability is obtained when the source’s transmit power goes to infinity. The Monte Carlo simulations are given to corroborate the correctness of our mathematical analysis. It is observed from simulation results that the proposed DPSBR scheme outperforms the SPSBR-based schemes in terms of OP and SOP under the impact of different parameters on system performance.


2018 ◽  
Vol 25 (7) ◽  
pp. 1014-1018 ◽  
Author(s):  
Yinghui Ye ◽  
Yongzhao Li ◽  
Zhaorui Wang ◽  
Xiaoli Chu ◽  
Hailin Zhang

Sign in / Sign up

Export Citation Format

Share Document