scholarly journals Efficient pulse compression favourable thermal excitation scheme for non-destructive testing using infrared thermography: a numerical study

2020 ◽  
Vol 56 (19) ◽  
pp. 1003-1005 ◽  
Author(s):  
J.A. Siddiqui ◽  
S. Patil ◽  
S.S. Chouhan ◽  
S. Wuriti ◽  
V. Arora ◽  
...  
2021 ◽  
Vol 11 (24) ◽  
pp. 12168
Author(s):  
Yoonjae Chung ◽  
Seungju Lee ◽  
Wontae Kim

Non-destructive testing (NDT) is a broad group of testing and analysis techniques used in science and industry to evaluate the properties of a material, structure, or system for characteristic defects and discontinuities without causing damage. Recently, infrared thermography is one of the most promising technologies as it can inspect a large area quickly using a non-contact and non-destructive method. Moreover, thermography testing has proved to be a valuable approach for non-destructive testing and evaluation of structural stability of materials. Pulsed thermography is one of the active thermography technologies that utilizes external energy heating. However, due to the non-uniform heating, lateral heat diffusion, environmental noise, and limited parameters of the thermal imaging system, there are some difficulties in detecting and characterizing defects. In order to improve this limitation, various signal processing techniques have been developed through many previous studies. This review presents the latest advances and exhaustive summary of representative signal processing techniques used in pulsed thermography according to physical principles and thermal excitation sources. First, the basic concept of infrared thermography non-destructive testing is introduced. Next, the principle of conventional pulsed thermography and signal processing technologies for non-destructive testing are reviewed. Then, we review advances and recent advances in each signal processing. Finally, the latest research trends are reviewed.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3851
Author(s):  
Zhi Qu ◽  
Peng Jiang ◽  
Weixu Zhang

Effective testing of defects in various materials is an important guarantee to ensure its safety performance. Compared with traditional non-destructive testing (NDT) methods, infrared thermography is a new NDT technique which has developed rapidly in recent years. Its core technologies include thermal excitation and infrared image processing. In this paper, several main infrared thermography nondestructive testing techniques are reviewed. Through the analysis and comparison of the detection principle, technical characteristics and data processing methods of these testing methods, the development of the infrared thermography nondestructive testing technique is presented. Moreover, the application and development trend are summarized.


2019 ◽  
Vol 5 (9) ◽  
pp. 72
Author(s):  
Kamel Mouhoubi ◽  
Vincent Detalle ◽  
Jean-Marc Vallet ◽  
Jean-Luc Bodnar

Within the framework of conservation and assistance for the restoration of cultural property, a method of analysis assistance has been developed to help in the restoration of cultural heritage. Several collaborations have already demonstrated the possibility of defects detection (delamination, salts) in murals paintings using stimulated infrared thermography. One of the difficulties encountered with infrared thermography applied to the analysis of works of art is the remanence of the pictorial layer. This difficulty can sometimes induce detection artifacts and false positives. A method of thermograms post-processing called PPT (pulse phase thermography) is described. The possibilities offered by the PPT in terms of reducing the optical effects associated with the pictorial layer are highlighted first with a simulation, and then through experiments. This approach can significantly improve the study of painted works of art such as wall paintings.


2013 ◽  
Vol 64 (1) ◽  
pp. 11003 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Kamel Mouhoubi ◽  
Luigi Di Pallo ◽  
Vincent Detalle ◽  
Jean-Marc Vallet ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
C. Toscano ◽  
C. Meola ◽  
M. C. Iorio ◽  
G. M. Carlomagno

The ever wide use of composite materials in the aeronautical industry has evidenced the need for development of ever more effective nondestructive evaluation methodologies in order to reduce rejected parts and to optimize production costs. Infrared thermography has been recently enclosed amongst the standardized non destructive testing techniques, but its usefulness needs still complete assessment since it can be employed in several different arrangements and for many purposes. In this work, the possibility to detect slag inclusions and porosity is analyzed with both lock-in themography and pulse thermography in the transmission mode. To this end, carbon-fiber-peinforced polymers different specimens are specifically fabricated of several different stacking sequences and with embedded slag inclusions and porosity percentages. As main results, both of the techniques are found definitely able to reveal the presence of the defects above mentioned. Moreover, these techniques could be considered complementary in order to better characterize the nature of the detected defects.


Sign in / Sign up

Export Citation Format

Share Document