Modified turbo codes with low decoding complexity

1998 ◽  
Vol 34 (23) ◽  
pp. 2228 ◽  
Author(s):  
Ping Li
2017 ◽  
Vol 18 (1) ◽  
pp. 111-131 ◽  
Author(s):  
Yogesh Beeharry ◽  
Tulsi Pawan Fowdur ◽  
Krishnaraj M. S. Soyjaudah

This paper investigates the performance of three different symbol level decoding algorithms for Duo-Binary Turbo codes. Explicit details of the computations involved in the three decoding techniques, and a computational complexity analysis are given. Simulation results with different couple lengths, code-rates, and QPSK modulation reveal that the symbol level decoding with bit-level information outperforms the symbol level decoding by 0.1 dB on average in the error floor region. Moreover, a complexity analysis reveals that symbol level decoding with bit-level information reduces the decoding complexity by 19.6 % in terms of the total number of computations required for each half-iteration as compared to symbol level decoding.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 633 ◽  
Author(s):  
Josu Etxezarreta Martinez ◽  
Pedro M. Crespo ◽  
Javier Garcia-Frías

Quantum turbo codes (QTC) have shown excellent error correction capabilities in the setting of quantum communication, achieving a performance less than 1 dB away from their corresponding hashing bounds. Existing QTCs have been constructed using uniform random interleavers. However, interleaver design plays an important role in the optimization of classical turbo codes. Consequently, inspired by the widely used classical-to-quantum isomorphism, this paper studies the integration of classical interleaving design methods into the paradigm of quantum turbo coding. Simulations results demonstrate that error floors in QTCs can be lowered significantly, while decreasing memory consumption, by proper interleaving design without increasing the overall decoding complexity of the system.


2010 ◽  
Vol 24 (7) ◽  
pp. 638-642
Author(s):  
Linli Cui ◽  
Fan Yang ◽  
Qicong Peng

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 116
Author(s):  
Wissal Ben Ameur ◽  
Philippe Mary ◽  
Jean-François Hélard ◽  
Marion Dumay ◽  
Jean Schwoerer

Non-orthogonal multiple access schemes with grant free access have been recently highlighted as a prominent solution to meet the stringent requirements of massive machine-type communications (mMTCs). In particular, the multi-user shared access (MUSA) scheme has shown great potential to grant free access to the available resources. For the sake of simplicity, MUSA is generally conducted with the successive interference cancellation (SIC) receiver, which offers a low decoding complexity. However, this family of receivers requires sufficiently diversified received user powers in order to ensure the best performance and avoid the error propagation phenomenon. The power allocation has been considered as a complicated issue especially for a decentralized decision with a minimum signaling overhead. In this paper, we propose a novel algorithm for an autonomous power decision with a minimal overhead based on a tight approximation of the bit error probability (BEP) while considering the error propagation phenomenon. We investigate the efficiency of multi-armed bandit (MAB) approaches for this problem in two different reward scenarios: (i) in Scenario 1, each user reward only informs about whether its own packet was successfully transmitted or not; (ii) in Scenario 2, each user reward may carry information about the other interfering user packets. The performances of the proposed algorithm and the MAB techniques are compared in terms of the successful transmission rate. The simulation results prove that the MAB algorithms show a better performance in the second scenario compared to the first one. However, in both scenarios, the proposed algorithm outperforms the MAB techniques with a lower complexity at user equipment.


Author(s):  
Costas Chaikalis ◽  
Dimitrios Kosmanos ◽  
Nicholas S. Samaras
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document