Low-energy minimum mean-distance algorithm for wireless sensor networks

Author(s):  
Wei Peng ◽  
D.J. Edwards
Optik ◽  
2019 ◽  
Vol 181 ◽  
pp. 378-382 ◽  
Author(s):  
Ziwei Yan ◽  
Pratik Goswami ◽  
Amrit Mukherjee ◽  
Lixia Yang ◽  
Sidheswar Routray ◽  
...  

2016 ◽  
Vol 12 (07) ◽  
pp. 4 ◽  
Author(s):  
Song Ling ◽  
Qi Dong Yang

For the requirement of low energy consumption and high privacy-preserving in wireless sensor networks of range query, we propose a low energy consumption secure and verifiable range query protocol called SPRQ.SPRQ uses a novel prime aggregation to protect the privacy of the query data; We further propose an idea of the and value chain whereby data items collected by each sensor will be linked with each other just like a chain.The Sink verifies the integrity of query results by checking whether the data chain of each sensor is complete or not. The results of simulation experiments prove that prime aggregation can effectively reduce the amount of increased data in the prefix encoding process,so,network energy consumption is lower compared with other secure range query protocols.


2017 ◽  
Vol 13 (04) ◽  
pp. 45 ◽  
Author(s):  
Liping LV

<p class="0abstract"><span lang="EN-US">Wireless sensor network is a new field of computer science and technology research. It has a very broad application prospects. In order to improve the network survival time, it is very important to design efficient energy-constrained routing protocols. In this paper, we studied the characteristics of wireless sensor networks, and analyzed the design criteria of sensor network routing algorithms. In view of the shortcomings of traditional algorithms, we proposed an energy-aware multi-path algorithm. When selecting a data transmission path, the energy-aware multi-path algorithm can avoid nodes with low energy levels. At the same time, it takes the remaining energy of the node and the number of hops as one of the measures of the path selection. The multi-path routing algorithm realized the low energy consumption of the data transmission path, thus effectively prolonging the network lifetime. Compared with the traditional algorithm, the results show that our method has high reliability and energy efficiency.</span></p>


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sign in / Sign up

Export Citation Format

Share Document