Surge protection devices - installation issues

1998 ◽  
Author(s):  
I. Braithwaite
Langmuir ◽  
2015 ◽  
Vol 31 (22) ◽  
pp. 6253-6264 ◽  
Author(s):  
Noor H. Jabarullah ◽  
Emanuele Verrelli ◽  
Clayton Mauldin ◽  
Luis A. Navarro ◽  
Josh H. Golden ◽  
...  

Transient analysis for large rising mains is performed to protect them from worst effects of water hammer. It requires costly surge analysis software for analysing system for surge & sizing surge protection devices. If software is not available, engineers requires, selection charts or formulae pertaining to quick sizing of surge protection device for given pumping main. If size of surge protection device is known suitable cost shall be considered in budgetary estimates. Surge anticipating valve is a cost effective, compact & reliable surge protection device used in pumping mains. It is installed on delivery manifold of the pump. There are no design guidelines or selection charts available by valve manufacturers for selection of surge anticipating valves. Hence in this paper, charts are prepared to estimate amount of surge & size of surge anticipating valve using KYPIPE TranSurge software after numerous analysis of pumping mains for various combinations of flows, diameters, elevations and lengths. In the end, software results are validated by comparing it with results obtained by experiment.


1986 ◽  
Vol IA-22 (4) ◽  
pp. 641-652 ◽  
Author(s):  
Gary L. Skibinski ◽  
Jerry D. Thunes ◽  
William Mehlhorn

Author(s):  
Elisabetta Belardini ◽  
Rajeev Pandit ◽  
V. V. N. K. Satish Koyyalamudi ◽  
Dante Tommaso Rubino ◽  
Libero Tapinassi

The sizing of surge protection devices for both compressor and surrounding system may require the knowledge of performance curves in 2nd quadrant with a certain level of accuracy. In particular two performance curves are usually important: the pressure ratio trend versus flow rate inside the compressor and the work coefficient or power absorption law. The first curve allows estimating mass flow in the compressor given a certain pressure level imposed by system, while the second is important to estimate the time required to system blow down during ESD (emergency shutdown). Experimental data are routinely not available in the early phase of anti-surge protection devices and prediction methods are needed to provide performance curves in 2nd quadrant starting from the geometry of both compressor and system. In this paper two different approaches are presented to estimate performance curves in 2nd quadrant: the first is a simple 1D approach based on velocity triangle and the second is a full unsteady CFD computation. The two different approaches are applied to the experimental data more deeply investigated in part I by Belardini E.[3]. The measurement of compressor behavior in 2nd quadrant was possible thanks to a dedicated test arrangement in which a booster compressor is used forcing stable reverse flow. The 1D method showed good agreement with experiments at design speed. In off-design condition a correlation for deviation angle was tuned on experimental data to maintain an acceptable level of accuracy. With very low reverse flow rates some discrepancies are still present but this region plays a secondary role during the dynamic simulations of ESD or surge events. The unsteady CFD computation allowed a deeper insight into the fluid structures, especially close to very low flow rates when the deviation of the 1D method and the experimental data is higher. An important power absorption mechanism was identified in the pre-rotation effect of impeller as also the higher impact of secondary flows. These two methods are complementary in terms of level of complexity and accuracy and to a certain extent both necessary. 1D methods are fast to be executed and more easily calibrated to match the available experiments, but they have limited capability to help understanding the underlying physics. CFD is a more powerful tool for understanding fluid structures and energy transfer mechanisms but requires computational times not always suitable for a production environment. 1D method can be used for standard compressor and applications for which consolidated experience have been already gathered while CFD is more suitable during the development of new products or up to front projects in general.


Sign in / Sign up

Export Citation Format

Share Document