2nd Quadrant Centrifugal Compressor Performance: Part II

Author(s):  
Elisabetta Belardini ◽  
Rajeev Pandit ◽  
V. V. N. K. Satish Koyyalamudi ◽  
Dante Tommaso Rubino ◽  
Libero Tapinassi

The sizing of surge protection devices for both compressor and surrounding system may require the knowledge of performance curves in 2nd quadrant with a certain level of accuracy. In particular two performance curves are usually important: the pressure ratio trend versus flow rate inside the compressor and the work coefficient or power absorption law. The first curve allows estimating mass flow in the compressor given a certain pressure level imposed by system, while the second is important to estimate the time required to system blow down during ESD (emergency shutdown). Experimental data are routinely not available in the early phase of anti-surge protection devices and prediction methods are needed to provide performance curves in 2nd quadrant starting from the geometry of both compressor and system. In this paper two different approaches are presented to estimate performance curves in 2nd quadrant: the first is a simple 1D approach based on velocity triangle and the second is a full unsteady CFD computation. The two different approaches are applied to the experimental data more deeply investigated in part I by Belardini E.[3]. The measurement of compressor behavior in 2nd quadrant was possible thanks to a dedicated test arrangement in which a booster compressor is used forcing stable reverse flow. The 1D method showed good agreement with experiments at design speed. In off-design condition a correlation for deviation angle was tuned on experimental data to maintain an acceptable level of accuracy. With very low reverse flow rates some discrepancies are still present but this region plays a secondary role during the dynamic simulations of ESD or surge events. The unsteady CFD computation allowed a deeper insight into the fluid structures, especially close to very low flow rates when the deviation of the 1D method and the experimental data is higher. An important power absorption mechanism was identified in the pre-rotation effect of impeller as also the higher impact of secondary flows. These two methods are complementary in terms of level of complexity and accuracy and to a certain extent both necessary. 1D methods are fast to be executed and more easily calibrated to match the available experiments, but they have limited capability to help understanding the underlying physics. CFD is a more powerful tool for understanding fluid structures and energy transfer mechanisms but requires computational times not always suitable for a production environment. 1D method can be used for standard compressor and applications for which consolidated experience have been already gathered while CFD is more suitable during the development of new products or up to front projects in general.

2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Antonio Posa ◽  
Antonio Lippolis ◽  
Elias Balaras

Turbopumps operating at reduced flow rates experience significant separation and backflow phenomena. Although Reynolds-Averaged Navier–Stokes (RANS) approaches proved to be usually able to capture the main flow features at design working conditions, previous numerical studies in the literature verified that eddy-resolving techniques are required in order to simulate the strong secondary flows generated at reduced loads. Here, highly resolved large-eddy simulations (LES) of a radial pump with a vaned diffuser are reported. The results are compared to particle image velocimetry (PIV) experiments in the literature. The main focus of the present work is to investigate the separation and backflow phenomena occurring at reduced flow rates. Our results indicate that the effect of these phenomena extends up to the impeller inflow: they involve the outer radii of the impeller vanes, influencing significantly the turbulent statistics of the flow. Also in the diffuser vanes, a strong spanwise evolution of the flow has been observed at the reduced load, with reverse flow, located mainly on the shroud side and on the suction side (SS) of the stationary channels, especially near the leading edge of the diffuser blades.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shazia Perveen ◽  
Raziya Nadeem ◽  
Shaukat Ali ◽  
Yasir Jamil

Abstract Biochar caged zirconium ferrite (BC-ZrFe2O5) nanocomposites were fabricated and their adsorption capacity for Reactive Blue 19 (RB19) dye was evaluated in a fixed-bed column and batch sorption mode. The adsorption of dye onto BC-ZrFe2O5 NCs followed pseudo-second-order kinetics (R 2 = 0.998) and among isotherms, the experimental data was best fitted to Sips model as compared to Freundlich and Langmuir isotherms models. The influence of flow-rate (3–5 mL min−1), inlet RB19 dye concentration (20–100 mg L−1) and quantity of BC-ZrFe2O5 NCs (0.5–1.5 g) on fixed-bed sorption was elucidated by Box-Behnken experimental design. The saturation times (C t /C o  = 0.95) and breakthrough (C t /C o  = 0.05) were higher at lower flow-rates and higher dose of BC-ZrFe2O5 NCs. The saturation times decreased, but breakthrough was increased with the initial RB19 dye concentration. The treated volume was higher at low sorbent dose and influent concentration. Fractional bed utilization (FBU) increased with RB19 dye concentration and flow rates at low dose of BC-ZrFe2O5 NCs. Yan model was fitted best to breakthrough curves data as compared to Bohart-Adams and Thomas models. Results revealed that BC-ZrFe2O5 nanocomposite has promising adsorption efficiency and could be used for the adsorption of dyes from textile effluents.


2001 ◽  
Vol 7 (3) ◽  
pp. 173-181
Author(s):  
Tong-Miin Liou ◽  
Meng-Yu Chen

Laser-Doppler velocimetry (LDV) measurements are presented of relative mean velocity and turbulence intensity components inside the impeller passage of a centrifugal fan with twelve backward curved blades at design, under-design, and over-design flow rates. Additional LDV measurements were also performed at the volute outlet to examine the uniformity of the outlet flow for the three selected flow rates. Complementary flow visualization results in the tongue region are further presented. It is found that the number of characteristic flow regions and the average turbulence level increase with decreasing air flow rate. For the case of under-design flow rate, there are a through-flow region on the suction side, a reverse flow region on the pressure side, and a shear layer region in between. The corresponding average turbulence intensity is as high as 9.1% of blade tip velocity.


1992 ◽  
Vol 114 (3) ◽  
pp. 735-742 ◽  
Author(s):  
Y. T. Lin ◽  
M. Choi ◽  
R. Greif

A study has been made of the deposition of particles that occurs during the modified chemical vapor deposition (MCVD) process. The three-dimensional conservation equations of mass, momentum, and energy have been solved numerically for forced flow, including the effects of buoyancy and variable properties in a heated, rotating tube. The motion of the particles that are formed is determined from the combined effects resulting from thermophoresis and the forced and secondary flows. The effects of torch speed, rotational speed, inlet flow rate, tube radius, and maximum surface temperature on deposition are studied. In a horizontal tube, buoyancy results in circumferentially nonuniform temperature and velocity fields and particle deposition. The effect of tube rotation greatly reduces the nonuniformity of particle deposition in the circumferential direction. The process is chemical-reaction limited at larger flow rates and particle-transport limited at smaller flow rates. The vertical tube geometry has also been studied because its symmetric configuration results in uniform particle deposition in the circumferential direction. The “upward” flow condition results in a large overall deposition efficiency, but this is also accompanied by a large “tapered entry length.”


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


1971 ◽  
Vol 47 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. A. Despard ◽  
J. A. Miller

The results of an experimental investigation of separation in oscillating laminar boundary layers is reported. Instantaneous velocity profiles obtained with multiple hot-wire anemometer arrays reveal that the onset of wake formation is preceded by the initial vanishing of shear at the wall, or reverse flow, throughout the entire cycle of oscillation. Correlation of the experimental data indicates that the frequency, Reynolds number and dynamic history of the boundary layer are the dominant parameters and oscillation amplitude has a negligible effect on separation-point displacement.


2021 ◽  
pp. 1-54
Author(s):  
Subhra Shankha Koley ◽  
Huang Chen ◽  
Ayush Saraswat ◽  
Joseph Katz

Abstract This experimental study characterizes the interactions of axial casing grooves with the flow in the tip region of an axial turbomachine. The tests involve grooves with the same inlet overlapping with the rotor blade leading edge, but with different exit directions located upstream. Among them, U grooves, whose circumferential outflow opposes the blade motion, achieve a 60% reduction in stall flowrate, but degrade the efficiency around the best efficiency point (BEP) by 2%. The S grooves, whose outlets are parallel to the blade rotation, improve the stall flowrate by only 36%, but do not degrade the BEP performance. To elucidate the mechanisms involved, stereo-PIV measurements covering the tip region and interior of grooves are performed in a refractive index matched facility. At low flow rates, the inflow into both grooves, which peaks when they are aligned with the blade pressure side, rolls up into a large vortex that lingers within the groove. By design, the outflow from S grooves is circumferentially positive. For the U grooves, fast circumferentially negative outflow peaks at the base of each groove, causing substantial periodic variations in the flow angle near the blade leading edge. At BEP, interactions with both grooves become milder, and most of the tip leakage vortex remains in the passage. Interactions with the S grooves are limited hence they do not degrade the efficiency. In contrast, the inflow into and outflow from the U grooves reverses direction, causing entrainment of secondary flows, which likely contribute to the reduced BEP efficiency.


Author(s):  
L. Gallar ◽  
I. Tzagarakis ◽  
V. Pachidis ◽  
R. Singh

After a shaft failure the compression system of a gas turbine is likely to surge due to the heavy vibrations induced on the engine after the breakage. Unlike at any other conditions of operation, compressor surge during a shaft over-speed event is regarded as desirable as it limits the air flow across the engine and hence the power available to accelerate the free turbine. It is for this reason that the proper prediction of the engine performance during a shaft over-speed event claims for an accurate modelling of the compressor operation at reverse flow conditions. The present study investigates the ability of the existent two dimensional algorithms to simulate the compressor performance in backflow conditions. Results for a three stage axial compressor at reverse flow were produced and compared against stage by stage experimental data published by Gamache. The research shows that due to the strong radial fluxes present over the blades, two dimensional approaches are inadequate to provide satisfactory results. Three dimensional effects and inaccuracies are accounted for by the introduction of a correction parameter that is a measure of the pressure loss across the blades. Such parameter is tailored for rotors and stators and enables the satisfactory agreement between calculations and experiments in a stage by stage basis. The paper concludes with the comparison of the numerical results with the experimental data supplied by Day on a four stage axial compressor.


Sign in / Sign up

Export Citation Format

Share Document