Plasma sources for plasma opening switches

Author(s):  
P. Stevenson
Keyword(s):  
1988 ◽  
Vol 23 (12) ◽  
pp. 1889-1892 ◽  
Author(s):  
Yu. I. Belchenko ◽  
A.S. Kupriyanov

2010 ◽  
Vol 130 (10) ◽  
pp. 955-962 ◽  
Author(s):  
Kaori Shigeta ◽  
Yoichi Nagata ◽  
Takahiro Iwai ◽  
Hidekazu Miyahara ◽  
Akitoshi Okino

1990 ◽  
Author(s):  
V. DAVIS ◽  
I. KATZ ◽  
M. MANDELL
Keyword(s):  

2012 ◽  
Vol 77 (12) ◽  
pp. 1689-1699 ◽  
Author(s):  
Zoran Petrovic ◽  
N. Puac ◽  
G. Malovic ◽  
S. Lazovic ◽  
D. Maletic ◽  
...  

We review the potential of plasma medical applications, the connections to nanotechnologies and the results obtained by our group. A special issue in plasma medicine is the development of the plasma sources that would achieve non-equilibrium at atmospheric pressure in atmospheric gas mixture with no or only marginal heating of the gas, and with desired properties and mechanisms that may be controlled. Our studies have shown that control of radicals or chemically active products of the discharge such as ROS (reactive oxygen species) and/or NO may be used to control the growth of the seeds. At the same time specially designed plasma needle and other sources were shown to be efficient to sterilize not only colonies of bacteria but also planctonic samples (microorganisms protected by water) or bio films. Finally we have shown that plasma may induce differentiation of stem cells. Non-equilibrium plasmas may be used in detection of different specific markers in medicine. For example proton transfer mass spectroscopy may be employed in detection of volatile organic compounds without their dissociation and thus as a technique for instantaneous measurement of the presence of markers for numerous diseases.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 925
Author(s):  
Seungryul Yoo ◽  
Dongchan Seok ◽  
Yongho Jung ◽  
Kiyong Lee

Carbon powders exhibit electrical conductivity that causes the powders to agglomerate due to the applied electrostatic forces and discharges capacitance when used for surface treatments with plasma sources. To avoid this obstacle, a non-direct method is used with active gas that is generated through plasma. This active gas is in contact with the carbon powder so that the hydrophilic characteristics are formed. It is the carboxyl COO− functional group that causes hydrophilic improvement and it is shown to increase in the carbon surface after soft oxidation. The wettability of carbon powder gradually improves with more plasma treatment time. This is shown through a simple water dispersion test. Eventually, the dispersed aqueous solution gradually separates the powder, which either floats or sinks. The sample treated for 60 min is shown to continuously sustain dispersibility in water over a long period of time.


2021 ◽  
Vol 294 ◽  
pp. 116948
Author(s):  
R. Rincón ◽  
J. Muñoz ◽  
F.J. Morales-Calero ◽  
J. Orejas ◽  
M.D. Calzada

Sign in / Sign up

Export Citation Format

Share Document