plasma treatment time
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 27)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
pp. 088532822110518
Author(s):  
Qing Zhu ◽  
Ping Ye ◽  
Fang Guo ◽  
Yimen Zhu ◽  
Wenbin Nan ◽  
...  

In this study, the surface of the covered stent was treated by plasma technology to introduce amino functional groups, and glutaraldehyde and heparin were successfully grafted to prepare a heparin-functionalized covered stent (HPLCS). The preparation parameters such as plasma treatment power, plasma treatment time, concentration of glutaraldehyde and heparin, and pH of heparin solution were studied in detail. The functionalized heparin covered stent can make the titer of heparin reach 1.23 ± 0.03 IU/cm2. In animal experiments, after implantation in pigs for 6 months, the titer of heparin can still reach 0.93 ± 0.05 IU/cm2. This work provides a good method for preparing heparin covered stent.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3011
Author(s):  
Ha-Thanh Ngo ◽  
Khanh Vu Thi Hong ◽  
The-Bach Nguyen

In the first part of the study, dyed polyester fabric was treated with a dielectric barrier discharge (DBD) plasma at 1 W/cm2 for 15, 30, 60 and 90 s. The wicking height, tensile strength and color of the control and plasma treated fabrics were measured. Results show that the fabric capillary increases with plasma treatment time up to 90 s. However, plasma treatment time longer than 60 s caused an obvious color change and decrease in tensile strength of fabric. Plasma contact time should be such that plasma can improve the hydrophilicity of the fabric and adversely affect the properties of the fabric as little as possible. Thus, the suitable plasma contact time should be less than 60 s. Based on these results, in the second part of the study, three different time levels (15, 20 and 30 s) were selected for plasma pretreatment of this fabric. The plasma-treated fabric was then padded with the flame retardant (FR) (CETAFLAM PDP 30), dried and finally cured at 190 °C for 120 s. The limited oxygen index (LOI) of FR fabrics and the vertical fire characteristics of FR fabric after being washed 5 times also were measured. Comparison of these results with those of FR fabrics without plasma pretreatment shows that plasma pretreatment improves the fabric’s flame retardancy and FR durability. Moreover, it also reduces the heat shrinkage of PET fabric due to high temperature curing. The scanning electron microscopy (SEM) images of the fabric after plasma treatment and FR treatment and the energy-dispersive spectroscopy (EDS) spectrum of the fabric are consistent with the above results.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 925
Author(s):  
Seungryul Yoo ◽  
Dongchan Seok ◽  
Yongho Jung ◽  
Kiyong Lee

Carbon powders exhibit electrical conductivity that causes the powders to agglomerate due to the applied electrostatic forces and discharges capacitance when used for surface treatments with plasma sources. To avoid this obstacle, a non-direct method is used with active gas that is generated through plasma. This active gas is in contact with the carbon powder so that the hydrophilic characteristics are formed. It is the carboxyl COO− functional group that causes hydrophilic improvement and it is shown to increase in the carbon surface after soft oxidation. The wettability of carbon powder gradually improves with more plasma treatment time. This is shown through a simple water dispersion test. Eventually, the dispersed aqueous solution gradually separates the powder, which either floats or sinks. The sample treated for 60 min is shown to continuously sustain dispersibility in water over a long period of time.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 580
Author(s):  
Chao-Ching Chiang ◽  
Philip Nathaniel Immanuel ◽  
Yi-Hsiung Chiu ◽  
Song-Jeng Huang

In this work we report on a rapid, easy-to-operate, lossless, room temperature heterogeneous H2O plasma treatment process for the bonding of poly(methyl methacrylate) (PMMA) and double-sided polished (DSP) silicon substrates by for utilization in sandwich structured microfluidic devices. The heterogeneous bonding of the sandwich structure produced by the H2O plasma is analyzed, and the effect of heterogeneous bonding of free radicals and high charge electrons (e−) in the formed plasma which causes a passivation phenomenon during the bonding process investigated. The PMMA and silicon surface treatments were performed at a constant radio frequency (RF) power and H2O flow rate. Changing plasma treatment time and powers for both processes were investigated during the experiments. The gas flow rate was controlled to cause ionization of plasma and the dissociation of water vapor from hydrogen (H) atoms and hydroxyl (OH) bonds, as confirmed by optical emission spectroscopy (OES). The OES results show the relative intensity peaks emitted by the OH radicals, H and oxygen (O). The free energy is proportional to the plasma treatment power and gas flow rate with H bonds forming between the adsorbed H2O and OH groups. The gas density generated saturated bonds at the interface, and the discharge energy that strengthened the OH-e− bonds. This method provides an ideal heterogeneous bonding technique which can be used to manufacture new types of microfluidic devices.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1434
Author(s):  
Thu Nguyen Thi Kim ◽  
Khanh Vu Thi Hong ◽  
Nguyen Vu Thi ◽  
Hai Vu Manh

This study consists of two parts. In the first, the woven polyester fabric, after washing to remove lubricant oils, was treated with the dielectric barrier discharge (DBD) plasma at the short plasma exposure time (from 15 to 90 s). The effect of the plasma exposure time on the activation of the polyester fabric was assessed by the wicking height of the samples. The results show that the wicking height in the warp direction of the plasma-treated samples improved but was virtually unchanged in the weft direction. Meanwhile, although the tensile strength in the warp direction of the fabric was virtually unaffected despite the plasma treatment time up to 90 s, in the weft direction it increased slightly with the plasma treatment time. Scanning Electron Microscope (SEM) images and the X-ray Photoelectron Spectroscopy (XPS) spectra of the samples before and after the plasma treatment were used to explain the nature of these phenomena. Based on the results of the first part, in the second part, two levels of the plasma treatment time (30 and 60 s) were selected to study their effect on the polyester fabric dyeability with disperse dyes. The color strength (K/S) values of the dyed samples were used to evaluate the dyeability of the fabric. The SEM images of the dyed samples also showed the difference in the dyeability between the plasma-treated and untreated samples. A new feature of this study is the DBD plasma treatment condition for polyester fabrics. The first is the use of DBD plasma in air (no addition of gas). Second is the very short plasma treatment time (only 15 to 90 s); this condition will be very favorable for the deployment on an industrial scale.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fuming Zhang ◽  
Guanghui Song ◽  
Dayakar Gandla ◽  
Yair Ein-Eli ◽  
Daniel Q. Tan

As a conventional electrode material of electric double-layer capacitors (EDLC), activated carbon (AC) still faces challenges to exhibit high capacitance. To address this problem, herein, we introduce a combined method of oxygen plasma and Al2O3 tomic layer deposition (ALD) on AC electrodes to reduce the impedance and improve the cycle stability of EDLC. The defect structure can be precisely designed by simply tuning the oxygen-plasma treatment time, thereby affecting the microstructures of AC electrode. Such a tactic permits the first-operated AC electrode with more defects and the ALD passivation of AC resulting in an outstanding rate performance for the device (40.6 F g–1 at 5 mA cm–2, 20.1 Fg–1 at 100 mA cm–2) and cycling stability (∼90% retention after 5,000 cycles). This benefit from the synergistic effect of defects from doped oxygen and stable aluminum oxide layer on the electrode surface. This work delivers a feasible strategy to construct a stable AC material with superior cycling performance for supercapacitor.


2021 ◽  
Vol 11 (5) ◽  
pp. 2240
Author(s):  
Dong Hyeun Ka ◽  
Ryza Aditya Priatama ◽  
Joo Young Park ◽  
Soon Ju Park ◽  
Seong Bong Kim ◽  
...  

Low-temperature atmospheric pressure plasma technology has been used in agriculture and plant science by direct and indirect treatment of bio-samples. However, the cellular and molecular mechanisms affected by plasma-activated water (PAW) are largely unexplored. In this study, PAW generated from a surface dielectric barrier discharge (SDBD) device was used for plant development. Physicochemical analysis was performed to confirm the PAW properties that correlated with the plasma treatment time. Arabidopsis thaliana L. was utilized to study the effect of the PAW treatment in the early developmental stage. The plasma-activated water samples are denoted as PAW5 time in minutes (min), PAW7 min, PAW12 min, PAW19 min and PAW40 min with the plasma treatment time. Seedlings grown in the PAW5, PAW7 and PAW12 had increased root lengths while the root lengths were decreased in the PAW19 and PAW40. In the cellular level observation, the PAW treatment specifically increased the root hair numbers per unit of the root but suppressed the root hair length in the PAW, indicating that PAW mainly modulates the root hair cell density in the root. Furthermore, we found that the root hair density and length at PAW5 in maximal observed conditions were positively regulated by root developmental-related genes including COBRA-LIKE9 (COBL9), XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE9 (XTH9), XTH17, AUXIN1 (AUX1) and LIKE-AUXIN (LAX3).


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2286
Author(s):  
Alenka Vesel ◽  
Rok Zaplotnik ◽  
Gregor Primc ◽  
Miran Mozetič

Methods for synthesizing nitrogen-doped graphene-like materials have attracted significant attention among the scientific community because of the possible applications of such materials in electrochemical devices such as fuel cells, supercapacitors and batteries, as well as nanoelectronics and sensors. The aim of this paper is to review recent advances in this scientific niche. The most common synthesis technique is nitridization of as-deposited graphene or graphene-containing carbon mesh using a non-equilibrium gaseous plasma containing nitrogen or ammonia. A variety of chemical bonds have been observed, however, it is still a challenge how to ensure preferential formation of graphitic nitrogen, which is supposed to be the most favorable. The nitrogen concentration depends on the processing conditions and is typically few at.%; however, values below 1 and up to 20 at.% have been reported. Often, huge amounts of oxygen are found as well, however, its synergistic influence on N-doped graphene is not reported. The typical plasma treatment time is several minutes. The results reported by different authors are discussed, and future needs in this scientific field are summarized. Some aspects of the characterization of graphene samples with X-ray photoelectron spectroscopy and Raman spectroscopy are presented as well.


Sign in / Sign up

Export Citation Format

Share Document