Radio-frequency front-end for 5 GHz wireless local area network transceivers

2008 ◽  
Vol 2 (5) ◽  
pp. 439 ◽  
Author(s):  
A. Italia ◽  
F. Carrara ◽  
A. Scuderi ◽  
E. Ragonese ◽  
C.D. Presti ◽  
...  
2016 ◽  
Vol 3 (1) ◽  
pp. 31-39
Author(s):  
F Ammar ◽  
Hanafi Hanafi

WiFi bekerja pada band 2,4 GHz dan 5 GHz. Standar WiFi yang bekerja pada frekuensi ini antara lain IEEE802.11g dan IEEE802.11a. Pada penelitian ini dilakukan pengukuran terhadap transfer rate download dan upload data dengan standar IEEE802.11g dan IEEE802.11a. Pengukuran dilakukan pada kanal Line of Sight (LOS), menggunakan dua buah laptop yang dihubungkan dengan Access Point (AP) standar IEEE802.11g dan IEEE802.11a.  Hasil penelitian diperoleh, pada standar IEEE802.11g, transfer rate download dan upload data tertinggi 2.662,54.KB/s dan 2.549,60 KB/s, dan terendah 484,50.KB/s dan 477,40 KB/s, sedangkan pada standar IEEE802.11a, transfer rate download dan upload data tertinggi 8.104,68 KB/s dan 5.744,24 KB/s, dan terendah 872,24 KB/s dan 465,38.KB/s. Pada standar IEEE802.11g, transfer rate download dan upload data pada sinyal terendah hingga di bawah 35% dan 30%, dari transfer rate download dan upload data tertinggi. Pada standar IEEE802.11a, transfer rate download dan upload data pada kualitas sinyal terendah hingga di bawah 20% dan 30%, dari transfer rate download dan upload data tertinggi. Kemampuan transfer rate download data Standar IEEE802.11a, 2–3 kali lebih baik pada kondisi kualitas sinyal tertinggi, dan tidak lebih dari 2 kali pada kondisi kualitas sinyal terendah, dibandingkan kemampuan transfer rate download data standar IEEE802.11g. Kemampuan transfer rate upload data Standar IEEE802.11a, 1,4–3 kali lebih baik pada kondisi kualitas sinyal tertinggi, dan 1-3 kali lebih baik pada kondisi kualitas sinyal terendah, dibandingkan kemampuan transfer rate upload data standar IEEE802.11g.


Author(s):  
A. Z. Yonis

<p><span lang="EN-US">IEEE 802.11ac based wireless local area network (WLAN) is emerging WiFi standard at 5 GHz, it is new gigabit-per-second standard providing premium services. IEEE 802.11ac accomplishes its crude speed increment by pushing on three distinct measurements firstly is more channel holding, expanded from a maximum of 80 MHz up to 160 MHz modes. Secondly, the denser modulation, now using 256-QAM, it has the ability to increase the data rates up to 7 Gbps using an 8×8 multiple input multiple output (MIMO). Finally, it provides high resolution for both narrow and medium bandwidth channels. This work presents a study to improve the performance of IEEE 802.11ac based WLAN system.</span></p>


2019 ◽  
Vol 7 (9) ◽  
pp. 290 ◽  
Author(s):  
Brennan Yamamoto ◽  
Allison Wong ◽  
Peter Joseph Agcanas ◽  
Kai Jones ◽  
Dominic Gaspar ◽  
...  

The effect of the maritime environment on radio frequency (RF) propagation is not well understood. In this work, we study the propagation of ad hoc 2.4 GHz and 5 GHz wireless local area network systems typically used for near-shore operation of unmanned surface vehicles. In previous work, maritime RF propagation performance is evaluated by collecting RSSI data over water and comparing it against existing propagation models. However, the multivariate effect of the maritime environment on RF propagation means that these single-domain studies cannot distinguish between factors unique to the maritime environment and factors that exist in typical terrestrial RF systems. In this work, we isolate the effect of the maritime environment by collecting RSSI data over land and over seawater at two different frequencies and two different ground station antenna heights with the same physical system in essentially the same location. Results show that our 2.4 GHz, 2 m antenna height system received a 2 to 3 dBm path loss when transitioning from over-land to over-seawater (equivalent to a 25 to 40% reduction in range); but increasing the frequency and antenna height to 5 GHz, 5 m respectively resulted in no meaningful path loss under the same conditions; this reduction in path loss by varying frequency and antenna height has not been demonstrated in previous work. In addition, we studied the change in ground reflectivity coefficient, R , when transitioning from over-land to over-seawater. Results show that R remained relatively constant, −0.49 ≤ R ≤ −0.45, for all of the over-land experiments; however, R demonstrated a frequency dependence during the over-seawater experiments, ranging from −0.39 ≤ R ≤ −0.33 at 2.4 GHz, and −0.51 ≤ R ≤ −0.50 at 5 GHz.


2020 ◽  
Vol 63 (2) ◽  
pp. 550-555
Author(s):  
Ying Liu ◽  
Shuang Liu ◽  
Yongtao Jia ◽  
Zhixing Chen ◽  
Yutao Zhang

2010 ◽  
Vol 56 (2) ◽  
pp. 137-144
Author(s):  
Johnson Agbinya ◽  
Vivian Lee ◽  
Khalid Aboura ◽  
Zenon Chaczko

Mapping and Recognition of Radio Frequency Clutter in Various Environments in AustraliaRadio frequency spectrum mapping allows determining the radio frequency signatures prevalent within an environment. We address the primary frequency bands used for cellular, wireless Local Area Network (LAN), Universal Mobile Telecommunications System (UMTS) and Ultra-wideband (UWB) communications. The purpose of the experiment presented in this paper is to map the detected radio frequencies within an environment and display the collated data on a graphical user interface. A program identifies the presence of the aforementioned radio frequency signatures and recognizes signal levels which exceed the exposure standards enforced by the Australian Communication and Media Authority. The results assist in the understanding of the ramifications of long-term exposure to radio frequency radiation associated with the continued proliferation of wireless devices.


2015 ◽  
Vol 9 (1) ◽  
pp. 213-218 ◽  
Author(s):  
Liping Han ◽  
Longfei Hao ◽  
Liyun Yan ◽  
Runbo Ma ◽  
Wenmei Zhang

A compact dual-frequency antenna with enhanced bandwidth is proposed in this paper. Dual-frequency operation is realized by cutting a slot in the elliptical patch, and bandwidth enhancement is achieved by using a partial ground plane. Compared with the conventional half-wave antenna, the antenna has a compact size of 24 × 20 mm2, which equals to 0.38 λ1× 0.31 λ1(λ1, the guided wavelength at the first resonant frequency). The dual-frequency antenna with a partial rectangle ground and a partial arc-shaped ground is investigated for impedance matching. Simulated results indicate that the antenna with a partial arc-shaped ground can obtain a larger bandwidth for two bands than that with a partial rectangle ground. Experimental results show that the antenna with a partial arc-shaped ground can operate in 2.4 and 5 GHz bands, which covers the 2.4, 5.2 and 5.8 GHz for wireless local area network. The impedance bandwidths of two bands are 9.5 and 13.6%, respectively. Also, good radiation performances have been achieved at two bands.


2012 ◽  
Vol 241-244 ◽  
pp. 2439-2444
Author(s):  
Ya Fei Li ◽  
Peng Yue ◽  
Chuan He

For the problem of the throughput degradation and fairness deterioration of the conventional radio frequency (RF) allocation mechanism in “hot point” areas, this paper presented a novel RF allocation mechanism using radio over free space optics (RoFSO) technology. The proposed algorithm contained initial RF assignment and optimal RF assignment. The initial RF allocation was built on the distribution of adjacent remote access units (RAUs). In addition, the optimal RF allocation includes RF switching and RF scheduling, both of which were designed based on site-specific cognition of stations. Through the analysis of simulation results, we know that our proposed algorithm in RoFSO network outperform the conventional RF allocation algorithm in wireless local area network (WLAN) by 350%, 45%, and 90% for average goodput of each user, fairness index of entire network and average frame service delay (FSD), respectively.


2015 ◽  
Vol 4 (1) ◽  
pp. 97
Author(s):  
Daniel Iancu ◽  
John Glossner ◽  
Gary Nacer ◽  
Stuart Stanley ◽  
Vitaly Kolashnikov ◽  
...  

The paper presents a Software Defined Radio (SDR) development platform with wideband tunable RF (Radio Frequency) front end. The platform is based on the SB3500 Multicore Multithreaded Vector Processor and it is intended to be used for a wide variety of communication protocols as: Time Division Duplexing/Frequency Division Duplexing Long Term Evolution (TDD/FDD LTE), Global Positioning System (GPS), Global System for Mobile/General Packet Radio Service (GSM/GPRS), Wireless Local Area Network (WLAN), Legacy Worldwide Interoperability for Microwave Access (WiMAX). As an example, we describe briefly the implementation of the LTE TDD/FDD communication protocol. As far as we know, this is the only LTE category 1 communication protocol entirely developed and executed in software (SW), without any hardware (HW) accelerators.


Author(s):  
J. Sánchez ◽  
C. Castro ◽  
L. Villaseñor

A technique for the modeling of wireless channels, namely the image ray tracing algorithm, is developed in this work to predict the local mean received power of a wireless local area network (WLAN) based on the 802.11a standard operating in the 5 GHz band. This technique has been enhanced in order to account for the propagation of the electromagnetic waves thru a wireless environment, including the absorption and reflection phenomenon at obstacles. The image ray tracing algorithm is used to calculate all the possible propagation paths between a radio transmitter and a receiver. The simulation results of the mean received power strength are compared against field measurements to validate the convenience of the simulation approach.


Sign in / Sign up

Export Citation Format

Share Document