Research on Radio Frequency Assignment Mechanism of the RoFSO Network Based on Site-Specific Cognition and Utility Function

2012 ◽  
Vol 241-244 ◽  
pp. 2439-2444
Author(s):  
Ya Fei Li ◽  
Peng Yue ◽  
Chuan He

For the problem of the throughput degradation and fairness deterioration of the conventional radio frequency (RF) allocation mechanism in “hot point” areas, this paper presented a novel RF allocation mechanism using radio over free space optics (RoFSO) technology. The proposed algorithm contained initial RF assignment and optimal RF assignment. The initial RF allocation was built on the distribution of adjacent remote access units (RAUs). In addition, the optimal RF allocation includes RF switching and RF scheduling, both of which were designed based on site-specific cognition of stations. Through the analysis of simulation results, we know that our proposed algorithm in RoFSO network outperform the conventional RF allocation algorithm in wireless local area network (WLAN) by 350%, 45%, and 90% for average goodput of each user, fairness index of entire network and average frame service delay (FSD), respectively.

2010 ◽  
Vol 56 (2) ◽  
pp. 137-144
Author(s):  
Johnson Agbinya ◽  
Vivian Lee ◽  
Khalid Aboura ◽  
Zenon Chaczko

Mapping and Recognition of Radio Frequency Clutter in Various Environments in AustraliaRadio frequency spectrum mapping allows determining the radio frequency signatures prevalent within an environment. We address the primary frequency bands used for cellular, wireless Local Area Network (LAN), Universal Mobile Telecommunications System (UMTS) and Ultra-wideband (UWB) communications. The purpose of the experiment presented in this paper is to map the detected radio frequencies within an environment and display the collated data on a graphical user interface. A program identifies the presence of the aforementioned radio frequency signatures and recognizes signal levels which exceed the exposure standards enforced by the Australian Communication and Media Authority. The results assist in the understanding of the ramifications of long-term exposure to radio frequency radiation associated with the continued proliferation of wireless devices.


2008 ◽  
Vol 2 (5) ◽  
pp. 439 ◽  
Author(s):  
A. Italia ◽  
F. Carrara ◽  
A. Scuderi ◽  
E. Ragonese ◽  
C.D. Presti ◽  
...  

2020 ◽  
Vol 7 (6) ◽  
pp. 1205
Author(s):  
Abdul Jalil

<p>Salah satu tantangan di era revolusi industri 4.0 adalah pengembangan sistem kontrol secara jarak jauh menggunakan koneksi jaringan nirkabel. Tujuan penelitian ini adalah membangun sistem kontrol perangkat elektronik jarak jauh dengan memanfaatkan jaringan <em>wireless tethering </em>pada <em>smartphone</em> menggunakan topologi <em>Wireless Local Area Network</em> (WLAN) dan <em>Robot Operating System</em> (ROS) sebagai perangkat lunak kontrol. Pemanfaatan <em>wireless tethering smartphone</em> untuk berbagi koneksi internet dapat dimanfaatkan untuk mengontrol perangkat elektronik yang terkoneksi ke Raspberry Pi. Koneksi jaringan <em>wireless tethering</em> memiliki arsitektur jaringan yang cukup sederhana jika dibandingkan dengan arsitektur pengontrolan jarak jauh lainnya, serta memiliki jarak jangkau koneksi yang cukup jauh dibandingkan dengan koneksi Bluetooth. Metodologi yang digunakan untuk mengontrol perangkat elektronik pada penelitian ini adalah menggunakan <em>Remote Access Control</em> (RAC) berbasis protokol SSH. Pemanfaatan <em>wireless tethering</em> dan aplikasi <em>mobile</em> SSH dapat digunakan untuk mengirim perintah ROS <em>message</em> dari <em>smartphone</em> ke Raspberry Pi untuk mengontrol pin GPIO Raspberry Pi agar aktif <em>high</em> atau aktif <em>low</em>. Pada saat ROS <em>message</em> mengirim perintah ke GPIO untuk aktif <em>high</em>, maka sistem akan memberikan instruksi kepada relay untuk menyalakan perangkat elektronik. Selanjutnya pada saat GPIO menerima perintah untuk aktif <em>low</em>, maka sistem akan memberikan instruksi kepada relay untuk mematikan perangkat elektronik. Hasil penelitian ini adalah <em>smartphone </em>android dapat digunakan untuk mengontrol perangkat elektronik seperti lampu, kipas angin, pemanas ruangan, dan <em>air conditioner</em> secara jarak jauh menggunakan jaringan WLAN berdasarkan perintah dari ROS <em>message</em>. Perangkat elektronik pada penelitian ini dapat di kontrol secara efektif pada jarak 20 meter di dalam ruangan dan 40 meter di area bebas hambatan.</p><p> </p><p class="Judul2"><strong><em>Abstract</em></strong></p><p class="Abstract"><em>One of the challenges in the Industrial Revolution 4.0 is the development of control systems by remotely using a wireless network connection. This study aims to build a control system for controlling the electronic devices by remotely with the utilization of wireless tethering network in the smartphone used Wireless Local Area Network (WLAN) topology and Robot Operating System (ROS) as software for the controller. Utilization of wireless tethering in the smartphone for share the internet connection can be used for control the electronic devices that connected to the Raspberry Pi. The connection of wireless tethering has a simple architecture when compared with the other architecture of the control system by remotely, it then has a long-range connection when compared to the Bluetooth connection. The methodology has used to manage the electronic devices in this study is used Remote Access Control (RAC) based on SSH protocol. The utilization of wireless tethering and mobile SSH can be used to sends ROS message command from smartphone to the Raspberry Pi to control the Raspberry Pi GPIO pin to active high or active low. When android smartphone send ROS message command to the Raspberry Pi to make the GPIO to active high, the system will instruct the relay to turn on the electronic devices. Then when GPIO accepts the instruction to active low, the system will instruct the relay to turn off the electronic devices. The result of this study is that android smartphone can be used to control the electronic devices such as a lamp, fan, heater, and air conditioner by remotely used WLAN network and command from ROS message. The electronic devices on this study can be controlled by effectively with the distance of 20 meters in the rooms and 40 meters at the outside area. </em></p><p class="Judul2"><strong><em><br /></em></strong></p>


2021 ◽  
Vol 2107 (1) ◽  
pp. 012004
Author(s):  
Noraini Azmi ◽  
Latifah Munirah Kamarudin ◽  
Latifah Mohamed ◽  
Ammar Zakaria ◽  
Mohd Hafiz Fazalul Rahiman ◽  
...  

Abstract Radio Frequency Identification (RFID) enables a large number of object monitoring since semi/passive tags are independent of batteries. In our previous work, the possibility of using different wireless technologies such as Wireless Sensor Network (WSN), Wireless Local Area Network (WLAN) and Radio Frequency Identification (RFID) to determine the moisture content in rice was investigated. Finding from our previous work suggest that RFID can be used to determine the moisture content of rice. While numerous research have been conducted for moisture content of grain, however, to author’s knowledge, there is only a few studies conducted on the localization of grain hostpot. Therefore, this study aims to investigate if the passive RFID array can be used to localize the location of the wet spot of grain. Prior, the experiment, a suitable setting for the RFID system were determined. In addition, a simple test was conducted to select a suitable operating frequency. From the investigation, the result indicates that only frequency channels 865, 866, 867, 868 and 869 MHz can detect all 30 tags. Meanwhile, frequency channel in the range 902 to 928 MHz detects 26 to 29 unique tags. Hence, 868 MHz was selected as the operating frequency throughout the experiment. The findings indicate that the RSSI value measured by the RFID reader decreased as the moisture of the sample increased when the tags were blocked by the sample placed at the designated location during the test.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


2018 ◽  
Author(s):  
Kiramat

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communications. Maintained by the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Committee (IEEE 802). This document highlights the main features of IEEE 802.11n variant such as MIMO, frame aggregation and beamforming along with the problems in this variant and their solutions


2020 ◽  
Vol 1550 ◽  
pp. 032078
Author(s):  
Kaigang Fan ◽  
Xin Chen ◽  
Biao Zhao ◽  
Jiale Wang ◽  
Wenbin Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document