Joint DOD and DOA estimation for bistatic multiple-input multiple-output radar target discrimination based on improved unitary ESPRIT method

2018 ◽  
Vol 12 (12) ◽  
pp. 1397-1405 ◽  
Author(s):  
Shu Gong ◽  
Hailiang Xiong ◽  
Meixuan Peng ◽  
Xuewen Ding ◽  
Huaibin Tang
2011 ◽  
Vol 403-408 ◽  
pp. 182-186
Author(s):  
Wei Wei Liu ◽  
Ning Cao ◽  
Hao Lu ◽  
Ju Rong Hu

Motivated by the development of Multiple-Input Multiple-Output (MIMO) communication, MIMO radar has drawn considerable attention. While, to design of MIMO radar detector, transmitting signal power and noise are usually assumed known in advance, but in practice we may need to estimate the transmitting signal power and noise first. In this paper, we introduce MIMO radar target performance analysis with unknown parameters. First transmitting signal energy is estimated by Maximum likelihood Estimation(MLE) when multipath satisfy special diversity condition and multipath has low rank. Then the detector in the Neyman-Pearson is developed and analyzed with estimated parameters. The simulation results show that the performance with unknown parameters is approximate to the detector with known parameters. The method proposed in this paper can be used to design the MIMO radar detectors with unknown parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jianfeng Li ◽  
Xiaofei Zhang ◽  
Weiyang Chen

Direction of arrival (DOA) estimation problem for multiple-input multiple-output (MIMO) radar with unknown mutual coupling is studied, and an algorithm for the DOA estimation based on root multiple signal classification (MUSIC) is proposed. Firstly, according to the Toeplitz structure of the mutual coupling matrix, output data of some specified sensors are selected to eliminate the influence of the mutual coupling. Then the reduced-dimension transformation is applied to make the computation burden lower as well as obtain a Vandermonde structure of the direction matrix. Finally, Root-MUSIC can be adopted for the angle estimation. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT)-like algorithm and MUSIC-like algorithm. Furthermore, the proposed algorithm has lower complexity than them. The simulation results verify the effectiveness of the algorithm, and the theoretical estimation error of the algorithm is also derived.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Zhenxin Cao ◽  
Peng Chen ◽  
Zhimin Chen ◽  
Yi Jin

This paper addresses the direction of arrival (DOA) estimation problem in the colocated multiple-input multiple-output (MIMO) radar with nonorthogonal signals. The maximum number of targets that can be estimated is theoretically derived as rankRsN, where N denotes the number of receiving antennas and Rs is the cross-correlation matrix of the transmitted signals. Therefore, with the rank-deficient cross-correlation matrix, the maximum number that can be estimated is less than the radar with orthogonal signals. Then, a multiple signal classification- (MUSIC-) based algorithm is given for the nonorthogonal signals. Furthermore, the DOA estimation performance is also theoretically analyzed by the Carmér-Rao lower bound. Simulation results show that the nonorthogonality degrades the DOA estimation performance only in the scenario with the rank-deficient cross-correlation matrix.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Chenglong Zhu ◽  
Hui Chen ◽  
Huaizong Shao

Phased-multiple-input multiple-output (phased-MIMO) enjoys the advantages of MIMO virtual array and phased-array directional gain, but it gets the directional gain at a cost of reduced degrees-of-freedom (DOFs). To compensate the DOF loss, this paper proposes a joint phased-array and nested-array beamforming based on the difference coarray processing and spatial smoothing. The essence is to use a nested-array in the receiver and then fully exploit the second order statistic of the received data. In doing so, the array system offers more DOFs which means more sources can be resolved. The direction-of-arrival (DOA) estimation performance of the proposed method is evaluated by examining the root-mean-square error. Simulation results show the proposed method has significant superiorities to the existing phased-MIMO.


Author(s):  
Qin Zhang ◽  
Linrang Zhang ◽  
Junpeng Shi ◽  
Yannian Zhou ◽  
Yaning Liu

Due to the multipath effect, the direction of arrival (DOA) estimation performance for low-angle targets decreases greatly. To overcome this problem, this paper proposes a spatial differencing reconstruction based DOA estimation algorithm by using the received signal model of multiple input multiple output (MIMO) radar. Combining with the spatial diversity of MIMO radar, the proposed method can first use the multipath echo power to select the best signal. Then, a spatial differencing based iterative scheme is developed to reduce the effect of additive noise, resulting in a better estimation performance for low-angle targets. Simulation results show that the proposed method has better advantages in suppressing noise and improving estimation accuracy.


Sensor Review ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 239-247 ◽  
Author(s):  
Shafinaz Mohd Basir ◽  
Idnin Pasya ◽  
Tajmalludin Yaakob ◽  
Nur Emileen Abd Rashid ◽  
Takehiko Kobayashi

Purpose This paper aims to present an approach of utilizing multiple-input multiple-output (MIMO) radar concept to enhance pedestrian classification in automotive sensors. In a practical environment, radar signals reflected from pedestrians and slow-moving vehicles are similar in terms of reflecting angle and Doppler returns, inducing difficulty for target discrimination. An efficient discrimination between the two targets depends on the ability of the sensor to extract unique characteristics from each target, for example, by exploiting Doppler signatures. This study describes the utilization of MIMO radar for Doppler measurement and demonstrates its application to improve pedestrian classification through actual laboratory measurements. Design/methodology/approach Multiple non-modulated sinusoidal signals are transmitted orthogonally over a MIMO array using time division scheme, illuminating human and non-human targets. The reflected signal entering each of the receiving antenna are combined at the radar receiver prior to Doppler processing. Doppler histogram was formulated based on a series of measurements, and the Doppler spread of the targets was determined from the histograms. Results were compared between MIMO and conventional single antenna systems. Findings Measurement results indicated that the MIMO configuration provides able to capture more Doppler information compared to conventional single antenna systems, enabling a more precise discrimination between pedestrian and other slow-moving objects on the road. Originality/value The study demonstrated the effectiveness of using MIMO configuration in radar-based automotive sensor to enhance the accuracy of Doppler estimation, which is seldom highlighted in literature of MIMO radars. The result also indicated its usefulness in improving target discrimination capability of the radar, through actual measurement.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yule Zhang ◽  
Guoping Hu ◽  
Hao Zhou ◽  
Mingming Zhu ◽  
Fei Zhang

A novel generalized nested multiple-input multiple-output (MIMO) radar for direction of arrival (DOA) estimation is proposed in this paper. The proposed structure utilizes the extended two-level nested array (ENA) as transmitter and receiver and adjusts the interelement spacing of the receiver with an expanding factor. By optimizing the array element configuration, we can obtain the best number of elements of the transmitter and receiver and the attainable degrees of freedom (DOF). Compared with the existing nested MIMO radar, the proposed MIMO array configuration not only has closed-form expressions for sensors’ positions and the number of maximum DOF, but also significantly improves the array aperture. It is verified that the sum-difference coarray (SDCA) of the proposed nested MIMO radar can get higher DOF without holes. MUSIC algorithm based on Toeplitz matrix reconstruction is employed to prove the rationality and superiority of the proposed MIMO structure.


Sign in / Sign up

Export Citation Format

Share Document