Simple overlap angle control strategy for commutation torque ripple minimisation in BLDC motor drive

2018 ◽  
Vol 12 (6) ◽  
pp. 797-807 ◽  
Author(s):  
Chetan K. Lad ◽  
Rajagopalan Chudamani
Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

In this paper, Zero-Voltage-Transition (ZVT) two-cell interleaved boost Power Factor Correction (PFC) converter for voltage source Inverter (VSI) fed permanent magnet brushless DC motor (PMBLDCM) drive has been proposed Scheme reduce the torque ripple of BLDC motor drive and also reduce the switching losses of VSI for Which an auxiliary circuit is designed and added to the interleaved boost converter.  For achieving soft switching, only one switch is used in auxiliary circuit which reduces the torque ripple and switching losses. In this proposed control strategy, the DC link voltage is controlled with interleaved boost converter which is proportional to the desired speed of the BLDC motor. In this paper, six switch and four switch VSI is also implemented with interleaved boost converter topology. A comparison is made between the six switch and Four Switch VSI fed PMBLDC Motor drive and Torque Analysis as been done. To validate the proposed work, results are presented. The results showed that proposed converter control strategy operating under soft switching mode improves the efficiency of the drive system with PFC feature in wide range of the speed control.


2014 ◽  
Vol 704 ◽  
pp. 385-389
Author(s):  
Hassan Moghbelli ◽  
Abolfazl Halvaei Niasar ◽  
Ehsan Boloor Kashani

Torque ripple and resulted acoustic noise and vibration are the main disadvantages of brushless DC (BLDC) motor drives. In this study, One-Cycle Control (OCC) is developed for current regulation of brushless DC (BLDC) motor drive as a unified constant-frequency integration control strategy. Employing one-cycle control strategy reduces high frequency torque ripple of conventional hysteresis current controllers leading to lower acoustic noise and vibration in the drive. To enhance reliability and reducing drive cost, an improved rotor position estimation technique is implemented. OCC strategy and sensorless method are realized using a low-cost general-purpose AVR microcontroller (Atmega8). It is shown that torque ripple, acoustic noise and vibration are reduced via OCC method comparing to conventional hysteresis control strategy. Computer simulations and experimental results with a 375W, 16 poles BLDC motor, demonstrate improved behavior of developed sensorless BLDC drive operation.


Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

<p>In this paper, interleaved power factor correction (PFC) boost converter based control strategy for BLDC motor has been Proposed. The converter exhibits the characteristics of voltage doublers for duty greater than 0.5. The switching losses and losses during reverse recovery operation are considerably reduced in this proposed topology. This is due reduction in switching voltages due to voltage doubler mode. The proposed topology has high efficiency compared to conventional counterpart due to slight increase in conduction losses. In this paper, the proposed PFC control Strategy has been applied to a six switch and four switch VSI fed BLDC Motor drive for effective torque ripple minimization. A comparison is also made between the six switch and Four Switch VSI fed PMBLDC Motor drive.</p><br />


Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

<p>In this paper, a new Buck PFC dc–dc converter topology along with fuzzy logic control for a permanent magnet (PM) brushless dc motor (PMBLDCM) has been proposed. The proposed buck-PFC converter topology is on single stage power factor correction converter. A concept of dc link voltage control which is proportional to speed of the PMBLDCM is used in this paper. The stator currents of the PMBLDCM during step change in the reference speed are controlled within the specified limits by an addition of a rate limiter in the reference dc link voltage. The effectives of the proposed control strategy of PMBLDCM drive is validated through simulation results.</p>


Sign in / Sign up

Export Citation Format

Share Document