Power system damping from real and reactive power modulations of voltage-source-converter station

2008 ◽  
Vol 2 (3) ◽  
pp. 311 ◽  
Author(s):  
S.-Y. Ruan ◽  
G.-J. Li ◽  
B.-T. Ooi ◽  
Y.-Z. Sun
Author(s):  
Damian O Dike ◽  
Satish M Mahajan

A strategy is presented for the self-tuning of a voltage source converter (VSC) based Flexible AC Transmission Systems (FACTS) according to the prevailing system condition. L-index, which is a power system voltage stability status indicator, and its associated parameters are used to automatically regulate the modulation signal of the VSC. This will lead to a proportionate adjusting of the magnitude of the current injected into, or absorbed from, the interconnected load bus by the FACTS device. This regulating scheme will enhance seamless and optimal reactive power compensation by utilizing the dynamic operational nature of present day distressed power system networks. Results obtained using this method when applied to selected load buses of the IEEE 14 bus system under varying practical scenarios showed its capability to appropriately control FACTS devices operation to accommodate system changing conditions. It is hoped that the outcome of this work will provide efficient tools for the determination of power system status, ensure optimal utilization of the dynamic reactive power compensation devices and reduce system outages.


2008 ◽  
Vol 32 (2) ◽  
pp. 179-195 ◽  
Author(s):  
Shameem Ahmad Lone ◽  
Mairajud-Din Mufti ◽  
Shiekh Javed Iqbal

Energy storage devices are required for power quality maintenance in stand alone power systems like wind-diesel ones. A redox flow battery system has many virtues which make its integration with a wind-diesel power system attractive. This paper proposes the integration of a redox flow battery system with a typical multi-machine wind-diesel power system for simultaneous voltage and frequency regulation. The redox flow battery is connected to wind park bus through a current controlled voltage source converter based on hysterisis current control. Keeping in view the non-linear and time varying nature of the hybrid wind-diesel-redox flow battery system, neuro-adaptive control is proposed for active/reactive power modulation of the redox flow battery.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1677 ◽  
Author(s):  
Ying Wang ◽  
Youbin Zhou ◽  
Dahu Li ◽  
Dejun Shao ◽  
Kan Cao ◽  
...  

Voltage source converter-based high-voltage direct current (VSC-HVDC) has the advantage of fast and independent controllability on active and reactive power. This paper focuses on effects of commonly proposed reactive power control modes, constant reactive power control and AC voltage margin control. Based on the mathematical model of single machine infinity equivalent system with embedded VSC-HVDC, the influence of VSC-HVDC with different reactive power control strategies on transient stability and dynamic stability of the AC system is studied. Then case studies were conducted with a realistic model of grid. The dynamic responses of AC/DC systems for different VSC-HVDC reactive power control modes were compared in detail. It is shown that compared to constant reactive power control, AC voltage margin control can provide voltage support to enhance the transient angle stability of an AC system. However, the fluctuant reactive power injected into a weak AC system may adversely affect power system oscillation damping for VSC-HVDC with AC voltage margin control, if the parameters of the controller have not been optimized to suppress the low-frequency oscillation. The results of this paper can provide certain reference for the decision of an appropriate VSC-HVDC reactive power control mode in practice.


Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


Author(s):  
Anjana Jain ◽  
R. Saravanakumar ◽  
S. Shankar ◽  
V. Vanitha

Abstract The variable-speed Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion System (WECS) attracts the maximum power from wind, but voltage-regulation and frequency-control of the system in standalone operation is a challenging task A modern-control-based-tracking of power from wind for its best utilization is proposed in this paper for standalone PMSG based hybrid-WECS comprising Battery Energy Storage System (BESS). An Adaptive Synchronous Reference Frame Phase-Locked-Loop (SRF-PLL) based control scheme for load side bi-directional voltage source converter (VSC) is presented for the system. MATLAB/Simulink model is developed for simulation study for the proposed system and the effectiveness of the controller for bi-directional-converter is discussed under different operating conditions: like variable wind-velocity, sudden load variation, and load unbalancing. Converter control scheme enhances the power smoothening, supply-load power-matching. Also it is able to regulate the active & reactive power from PMSG-BESS hybrid system with control of fluctuations in voltage & frequency with respect to varying operating conditions. Proposed controller successfully offers reactive-power-compensation, harmonics-reduction, and power-balancing. The proposed scheme is based on proportional & integral (PI) controller. Also system is experimentally validated in the laboratory-environment and results are presented here.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2260
Author(s):  
Fan Cheng ◽  
Lijun Xie ◽  
Zhibing Wang

This paper investigated the characteristics of a novel type of hybrid high voltage direct current (HVdc) converter, which is composed by line commutated converter series with voltage source converter. The system and valve level control strategies are introduced, which can provide ac system voltage support. A novel filter design scheme composed by resonant filers for hybrid HVdc are also proposed, which can decrease the capacity of reactive power compensation equipment without deteriorate harmonic characteristics. The ac voltage of HVdc fluctuation level caused by transmitted power variation will be effectively reduced, with the coordination between filter design scheme and converter control. In addition, the influence of ac grid strength is also analyzed by equivalent source internal impedance represented by short circuit ratio (SCR). Finally, the +800 kV/1600 MW hybrid HVdc system connecting two ac grids under different SCR cases are studied, and the PSCAD/EMTDC simulation results have validated the effectiveness for proposed strategy.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 490 ◽  
Author(s):  
Yueping Jiang ◽  
Xue Jin ◽  
Hui Wang ◽  
Yihao Fu ◽  
Weiliang Ge ◽  
...  

Voltage source converter (VSC) has been extensively applied in renewable energy systems which can rapidly regulate the active and reactive power. This paper aims at developing a novel optimal nonlinear adaptive control (ONAC) scheme to control VSC in both rectifier mode and inverter mode. Firstly, the nonlinearities, parameter uncertainties, time-varying external disturbances, and unmodelled dynamics can be aggregated into a perturbation, which is then estimated by an extended state observer (ESO) called high-gain perturbation observer (HGPO) online. Moreover, the estimated perturbation will be fully compensated through state feedback. Besides, the observer gains and controller gains are optimally tuned by a recent emerging biology-based memetic salp swarm algorithm (MSSA), the utilization of such method can ensure a desirably satisfactory control performance. The advantage of ONAC is that even though the operation conditions are constantly changing, the control performance can still be maintained to be globally consistent. In addition, it is noteworthy that in rectifier mode only the reactive power and DC voltage are required to be measured, while in inverter mode merely the reactive power and active power have to be measured. At last, in order to verify the feasibility of ONAC in practical application, a hardware experiment is implemented.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750133 ◽  
Author(s):  
R. Balamurugan ◽  
R. Nithya

In this paper, fuzzy logic controller (FLC)-based three-phase shunt active power filter with photovoltaic (PV) system is proposed. This filter comprises voltage source converter (VSC) with DC link capacitor at the input side and is supplied by PV system. The salient feature of the filter is that it provides reactive power compensation with line current harmonic reduction and also neutral compensation at point of common coupling (PCC). The PV system and a battery are connected with VSC through DC–DC converter. This paper also proposes a control algorithm using instantaneous [Formula: see text]-[Formula: see text] theory that generates a reference current to counteract the harmonics. The FLC controls the DC link voltage in reference to the above reference current. The performance of the proposed filter for compensation is confirmed by using the MATLAB/Simulink environment and results are validated.


2020 ◽  
Vol 10 (19) ◽  
pp. 6792 ◽  
Author(s):  
Soumya Ranjan Das ◽  
Prakash K. Ray ◽  
Arun Kumar Sahoo ◽  
Somula Ramasubbareddy ◽  
Thanikanti Sudhakar Babu ◽  
...  

Nowadays, the application of distributed energy sources (DES) has been extensively employed to serve the power system by supplying the power into the grid and improving the power quality (PQ). Therefore, DES is one solution that can efficiently overcome the energy crisis and climate change problems. The DES, such as solar photovoltaic (PV), wind turbine (WT), and battery energy storage systems (BESS), are incorporated to form the microgrid (MG), which are interfaced with the power system. However, interfacing MG to the power system is undoubtedly a big challenge. Therefore, more focus is required on the control strategy to control the MG with the power system. To address the PQ problems, a controlled MG integrated with a hybrid shunt active power filter (HSAPF) is provided in this work. For controlling the MG integrated HSAPF, different control strategies are applied. In this work, a learning-based incremental conductance (LINC) technique is used as a maximum power point tracking (MPPT) for tracking the maximum power in PV and WT. The voltage source inverter (VSI) of HSAPF is controlled using a wavelet-based technique with a synchronous reference frame (SRF). The main focus is to improve the PQ by compensating the harmonics and regulating the reactive power in both grid-interactive and islanded condition and also supply continuous and adequate power to the non-linear load. The power system model has been developed with MATLAB/Simulink tool, which shows the efficiency of the proposed method. The results obtained have been satisfactorily under various operating conditions and can be validated further using the real-time dSPACE.


Sign in / Sign up

Export Citation Format

Share Document