scholarly journals Erratum: Reduction of high‐frequency injection losses, acoustic noise and total harmonic distortion in IPMSM sensorless drives

2020 ◽  
Vol 13 (2) ◽  
pp. 389-389
2019 ◽  
Vol 12 (12) ◽  
pp. 3197-3207 ◽  
Author(s):  
Ahmadreza Alaei ◽  
Sayed Morteza Saghaeian Nejad ◽  
Jacek F. Gieras ◽  
Dong‐Hee Lee ◽  
Jin‐Woo Ahn

2012 ◽  
Vol 614-615 ◽  
pp. 1539-1546
Author(s):  
Muhamad Fairus Hamid ◽  
Norazlan Hashim ◽  
Ahmad Farid Abidin

This paper presents an analysis and improvement of self-oscillation electronic ballast for local emergency light. The improvement circuit has been presented by replacing the original BJTs with MOSFETs as a switching device. Also, 555-timer has been used to drive the MOSFETs instead of the ballast feedback in the original circuit. This electronic ballast start and regulate fluorescent lamps by converting a DC supply to high ignition AC voltage by a rectifier circuit with switching frequency in the range of 20 kHz -1MHz. Operation at high frequency has two advantages; an improved efficiency and elimination of flickering in the lamps. The simulation has been done by using PSIM Simulink software and its results have been compared with experimental results. The results shows that by using MOSFETs as a switching device, the Total Harmonic Distortion (THD) has been reduced and the brightness of lamp tube has been increased greatly.


2011 ◽  
Vol 403-408 ◽  
pp. 3600-3607
Author(s):  
S. Selvaperumal ◽  
C.Christober Asir Rajan

This paper presents 250W, 20 KHz LCL resonant inverter having Efficiencies greater than 95% were obtained down to resistive loads of 50%. Efficiencies greater than 80% were obtained at significantly reduced loads (11%). Operation above resonance was utilized to increase the efficiency and maintain zero voltage switching (ZVS) for varied loads. Total harmonic distortion (THD) of less than 8% was achieved for all resistive loads. The above results were obtained from evaluation version of PSIM also used to model the LCL topology for varied loads and LCL configurations. A LCL Resonant Inverter is proposed for applications in high frequency distributed AC power systems.


Author(s):  
He Wang ◽  
Chengwen Wang ◽  
Long Quan ◽  
Guofang Gong ◽  
Wenjing Li

The present study is focused on a novel method for the acquisition of high-frequency sinusoidal vibration waveform with electro-hydraulic vibration exciter. A rotary valve controlled electro-hydraulic vibration exciter is proposed to make it easier to obtain high vibration frequency than the conventional servo valve controlled counterpart. Three common used offices are taken into consideration: rectangular orifice, triangular orifice, and semicircular orifice. Analytical solution to orifice design of shape and axial length is suggested for the accurate control of vibration waveform. Harmonic theory borrowed from electronic technology is used as an evaluation index for the shape of vibration waveform. The orifice shape design decision is made according to the total harmonic distortion of vibration waveform. The nonlinear differential equation which models vibration waveform is established. The orifice axial length is designed according to the supply pressure, vibration frequency, and amplitude. Both theoretical and experimental results show that rectangular orifice is desirable for high-frequency sinusoidal vibration waveforms. With the orifice design solution, the proposed vibration exciter can output the vibration waveform with total harmonic distortion of less than 1% as compared with sinusoidal waveform and maximum error of 5% as compared with experimental value at vibration frequency of higher than 100 Hz, and greatly extend the frequency bandwidth when sinusoidal vibration waveform is required.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2311
Author(s):  
Ximing Fu ◽  
Kamal El-Sankary ◽  
Yadong Yin

This paper presents a driver amplifier with high bandwidth-power efficiency, high capacitor-driving capacity, and low total harmonic distortion (THD). One complementary differential pair composed of self-cascode transistors is incorporated to obtain a full input voltage swing. Flipped voltage follower (FVF) buffers are applied as second stage to drive the last class-AB output stage. Moreover, a dual-loop active-feedback frequency compensation (DLAFC) is presented, which can stabilize the proposed multistage amplifier and keep the dominant pole on high frequency to obtain high-frequency total harmonic distortion (THD) suppression. To achieve a low-frequency phase margin protection (PMP), one left half-plane (LHP) zero is introduced to compensate for the nondominant pole caused by the load capacitor. Meanwhile, two high-frequency LHP zeros are injected to achieve high-frequency phase margin boosting (PMB) and reduce the amplifier’s settling time and integration area. This proposed amplifier is implemented in a standard DBH 0.18 μm 5 V CMOS process, and it achieves over 115-dB DC gain, 150–300 MHz GBW under 0–100 p load capacitors, ultra-high THD2,3 suppression ranges from 100 kHz to 10 MHz under 1–2 V output swing, and over 250 V/μs average slew rate, by only dissipating 12.5 mW at 5 V power supply.


Sign in / Sign up

Export Citation Format

Share Document