scholarly journals Power factor improvement using DCM Cuk converter with coupled inductor

1999 ◽  
Vol 146 (2) ◽  
pp. 231 ◽  
Author(s):  
G. Ranganathan ◽  
L. Umanand

The aim of the article is to maximize the battery life using LLC resonant tank. LLC tank designing methodology and also the practical designing examination is introduced in LLC multi converter. Designed dc- dc converter increases the battery life by eliminating low and high frequency current ripples. In addition, bridgeless cuk converter is used for power factor improvement. To achieve the better power factor and to reduce the conduction losses the cuk converter is aimed to function in discontinuous mode of conduction (DCM). DC output voltage ranging 42-24 V for 650 W is obtained from the modelling for battery charging application.


2016 ◽  
Vol 136 (12) ◽  
pp. 991-996 ◽  
Author(s):  
Masataka Minami ◽  
Takeshi Ito ◽  
Shin-ichi Motegi ◽  
Masakazu Michihira

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2582 ◽  
Author(s):  
Samuel Lotsu ◽  
Yuichiro Yoshida ◽  
Katsufumi Fukuda ◽  
Bing He

Confronting an energy crisis, the government of Ghana enacted a power factor correction policy in 1995. The policy imposes a penalty on large-scale electricity users, namely, special load tariff (SLT) customers of the Electricity Company of Ghana (ECG), whose power factor is below 90%. This paper investigates the impact of this policy on these firms’ power factor improvement by using panel data from 183 SLT customers from 1994 to 1997 and from 2012. To avoid potential endogeneity, this paper adopts a regression discontinuity design (RDD) with the power factor of the firms in the previous year as a running variable, with its cutoff set at the penalty threshold. The result shows that these large-scale electricity users who face the penalty because their power factor falls just short of the threshold are more likely to improve their power factor in the subsequent year, implying that the power factor correction policy implemented by Ghana’s government is effective.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1720
Author(s):  
Hashim Raza Khan ◽  
Majida Kazmi ◽  
Haris Bin Ashraf ◽  
Muhammad Hashir Bin Khalid ◽  
Abul Hasan ◽  
...  

The usage of BLDC motors in the low-power range is increasing rapidly in home appliances such as ceiling fans. This has necessitated the development of reliable, compact and efficient AC-DC power supplies for motor drive circuitry. This paper presents a power supply design consisting of an AC-DC isolated PFC Cuk converter with integrated magnetics that supplies a single-shunt voltage source inverter for the sensorless drive of the BLDC fan motor. The proposed power supply design is comprised of an integrated magnetics structure in which the two inductors and the transformer windings share the same core. The zero input and output ripple current conditions have been derived from the reluctance model of the magnetic assembly. Smooth operation of the motor by minimizing the motor torque ripples is evident from the results. The Cuk converter operates in continuous conduction mode (CCM), employing the current multiplier method. The CCM-based current multiplier control loop ensures a near-unity power factor as well as low total harmonic distortion in the supply current. The current loop also provides over-current protection, enhancing reliability of the system. Moreover, the speed of the BLDC motor is controlled by the field oriented control (FOC) algorithm, which enables direct operation with alternate energy sources such as batteries and solar photovoltaic panels. The performance of the proposed supply is validated: motor torque ripple is reduced to only 2.14% while maintaining 0.999 power factor and only 4.72% THD at full load. Failure modes analysis has also been performed through software simulations, using the PLECS simulation environment. Due to the reliable power supply design with low ripples, it is well suited for low-power BLDC motors in home appliances and small power tools, in addition to ceiling fans.


Sign in / Sign up

Export Citation Format

Share Document