Counter-clockwise reflection-coefficient behaviour on a Smith chart

1980 ◽  
Vol 127 (3) ◽  
pp. 154
Author(s):  
C.M. Krowne
2017 ◽  
Vol 15 ◽  
pp. 37-41
Author(s):  
Seyed Mohammadamin Moosavi ◽  
Christian Widemann ◽  
Wolfgang Mathis

Abstract. In this contribution, different approaches based on the X-parametersTM to model the behavior of mismatched nonlinear transfer systems are examined. The X-parameters based on the PHD1-principle introduced by Verspecht and Root (2006) as an extension of the well-known S-parameters describe nonlinear microwave 2-port-networks under large signal conditions. Using load-pull measurement techniques they can be used for arbitrary load situations. Beside this load-pull approach, in the work of Cai et al. (2015), it is stated that it is sufficient to use one optimized X-parameter set for each value of the load reflection coefficient without introducing a large error. In another contribution of Cai and Yu (2015), this approach is extended to cover the whole smith chart with one optimized X-parameter set instead. In this work, these different approaches are compared and brought into question. 1 polyharmonic distortion; Verspecht and Root (2006).


2020 ◽  
pp. 59-63
Author(s):  
A.S. Bondarenko ◽  
A.S. Borovkov ◽  
I.M. Malay ◽  
V.A. Semyonov

The analysis of the current state of the reflection coefficient measurements in waveguides at millimeter waves is carried out. An approach for solving the problem of reproducing the reflection coefficient measurement scale is proposed. Mathematical equations, which are the basis of the reflection coefficient measurement equation are obtained. The method of determining the metrological performance of reflection coefficient unit’s reference standards is developed. The results of electrodynamic modeling and analytical calculations by the developed method are compared. It is shown that this method can be used for reproducing the reflection coefficient unit in the development of the State primary standard.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


In this paper, a 15* 80 sized antenna is designed over a paper substrate to test its flexible properties. The proposed antenna feed by a grounded coplanar waveguide(GCPW) is stimulated and the measured results show the operating Dual Band of the antenna cover(3.34-3.62 GHz) and (5.92-6.24 GHz) with the reflection coefficient |S11|< -15dB.These frequency bands operate over SHF bands and hence supports Fixed Mobile Communication and WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document