scholarly journals Frequency-coupled impedance model based subsynchronous oscillation analysis for direct-drive wind turbines connected to a weak AC power system

2019 ◽  
Vol 2019 (18) ◽  
pp. 4841-4846 ◽  
Author(s):  
Wei Liu ◽  
Xiaorong Xie ◽  
Jan Shair ◽  
Jingbo He
2019 ◽  
Vol 9 (14) ◽  
pp. 2831
Author(s):  
Saijun Yuan ◽  
Zhiguo Hao ◽  
Tao Zhang ◽  
Xiaotian Yuan ◽  
Jin Shu

Subsynchronous oscillation (SSO) is a critical issue for the direct-drive permanent magnet synchronous generator (D-PMSG) based wind farm integrated to a weak onshore AC grid. To analyze the mechanism of the SSO phenomenon of D-PMSG based wind farm, widely used impedance-based stability analysis method is utilized in this paper. First, the impedance model based on the harmonic linearization theory of grid-connected D-PMSG is proposed, and the mechanism of sub/supsynchronous currents coupling is analyzed quantitatively for the first time. Then, based on the impedance model and relative stability criterion, the influence of wind farm operating parameters and grid impedance on stability is discussed. Simulations are carried out to verify the correctness of theoretical analysis.


2014 ◽  
Vol 950 ◽  
pp. 314-320 ◽  
Author(s):  
Jun Jia ◽  
Xin Xin Hu ◽  
Ping Ping Han ◽  
Yan Ping Hu

With the scale of wind farm continuously increasing, when grid fault, the influences of the wind turbines connected to the grid on the stability of the power grid can never be ignored. Therefore, there are higher standards of the wind turbines’ abilities of fault ride-through (FRT) and producing reactive power. This paper studies the direct-drive wind power system, and the main point is the fault ride-through (FRT) of the permanent magnetic synchronous generator (PMSG) with Chopper. By establishing the dynamic model of PMSG under the environment of DigSILENT, this paper simulates the fault ride-through (FRT) of the direct-drive wind power system connecting into power grid. During the research, we focus on the stability of voltage about the Chopper to the DC bus under faults. What’s more, in this paper, we analysis the data about how the Chopper help the DC bus to improve its stability. The simulation results show that: when there is a fault on the point of common coupling, the permanent magnetic synchronous generator has the capability of fault ride-through (FRT). Especially when there is a voltage dip on the grid side, the permanent magnetic synchronous generator could produce reactive power for power grid, effectively preventing the system voltage from declining seriously, so as to improve the system stability under faults.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zuoshan Li

This article first studies the operating principles of wind turbines, focusing on the analysis of the structure and working principles of permanent magnet direct-drive wind turbines. According to the actual needs of the wind power system, the monitoring objects of the monitoring system are determined, and the overall monitoring plan for wind power generation is proposed to realize real-time analysis of the operating characteristics of the wind power system. At the same time, it pointed out the great significance of the wind power generation simulation experiment system and focused on the wind speed modeling. In terms of hardware research and analysis, relevant sensors, high-speed data acquisition cards, etc., were selected, and relevant signal conditioning circuits were designed, and a permanent magnet direct-drive wind power generation system simulation monitoring platform was constructed. In terms of software, LabVIEW was chosen as the design language of the monitoring system, and it pointed out the advantages of using LabVIEW in this monitoring system. Finally, the system uses the laboratory permanent magnet direct-drive wind turbine as the monitoring object. The practicality and accuracy of the system are verified through experiments such as permanent magnet motor power test, motor speed test, database system test, and remote monitoring test. The experimental results show that the monitoring system has a friendly interface and perfect functions and has important practicability and reference in the field of wind power monitoring.


Sign in / Sign up

Export Citation Format

Share Document