Real-time digital co-simulation method of smart grid for integrating large-scale demand response resources

2017 ◽  
Vol 2017 (1) ◽  
pp. 1949-1953 ◽  
Author(s):  
Jie Song ◽  
Songhan Jiang ◽  
Peichao Zhang ◽  
Jian Zhou
2017 ◽  
Vol 28 (10) ◽  
pp. 1750126 ◽  
Author(s):  
Yutong Liu ◽  
Chengxuan Cao ◽  
Yaling Zhou ◽  
Ziyan Feng

In this paper, an improved real-time control model based on the discrete-time method is constructed to control and simulate the movement of high-speed trains on large-scale rail network. The constraints of acceleration and deceleration are introduced in this model, and a more reasonable definition of the minimal headway is also presented. Considering the complicated rail traffic environment in practice, we propose a set of sound operational strategies to excellently control traffic flow on rail network under various conditions. Several simulation experiments with different parameter combinations are conducted to verify the effectiveness of the control simulation method. The experimental results are similar to realistic environment and some characteristics of rail traffic flow are also investigated, especially the impact of stochastic disturbances and the minimal headway on the rail traffic flow on large-scale rail network, which can better assist dispatchers in analysis and decision-making. Meanwhile, experimental results also demonstrate that the proposed control simulation method can be in real-time control of traffic flow for high-speed trains not only on the simple rail line, but also on the complicated large-scale network such as China’s high-speed rail network and serve as a tool of simulating the traffic flow on large-scale rail network to study the characteristics of rail traffic flow.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Xin Wang ◽  
Jianhua Zhang ◽  
Massimo Scalia

This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1848 ◽  
Author(s):  
Gautham Krishnadas ◽  
Aristides Kiprakis

Demand response (DR) is an integral component of smart grid operations that offers the necessary flexibility to support its decarbonisation. In incentive-based DR programs, deviations from the scheduled DR capacity affect the grid’s energy balance and result in revenue losses for the DR participants. This issue aggravates with increasing DR delivery from participants such as large consumer buildings who have limited standard methods to follow for DR capacity scheduling. Load curtailment based DR capacity availability from such consumers can be forecasted reliably with the help of supervised machine learning (ML) models. This study demonstrates the development of data-driven ML based total and flexible load forecast models for a retail building. The ML model development tasks such as data pre-processing, training-testing dataset preparation, cross-validation, algorithm selection, hyperparameter optimisation, feature ranking, model selection and model evaluation are guided by deployment-centric design criteria such as reliability, computational efficiency and scalability. Based on the selected performance metrics, the day-ahead and week-ahead ML based load forecast models developed for the retail building are shown to outperform the timeseries persistence models used for benchmarking. Furthermore, the deployment of these models for DR capacity scheduling is proposed as an ML pipeline that can be realised with the help of ML workflows, computational resources as well as systems for monitoring and visualisation. The ML pipeline ensures faster, cost-effective and large-scale deployment of forecast models that support reliable DR capacity scheduling without affecting the grid’s energy balance. Minimisation of revenue losses encourages increased DR participation from large consumer buildings, ensuring further flexibility in the smart grid.


2010 ◽  
Vol 22 (4) ◽  
pp. 662-669 ◽  
Author(s):  
Wei Ren ◽  
Xiaohui Liang ◽  
Shang Ma ◽  
Xukun Shen

Sign in / Sign up

Export Citation Format

Share Document