scholarly journals Mass and energy supply of a cool coronal loop near its apex

2018 ◽  
Vol 611 ◽  
pp. A49 ◽  
Author(s):  
Limei Yan ◽  
Hardi Peter ◽  
Jiansen He ◽  
Lidong Xia ◽  
Linghua Wang

Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both.Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation.Methods. We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si iv, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI).Results. The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from ~−70 km s−1 to ~−265 km s−1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before and after the possible heating phase, the intensity changes in the optically thin (Si IV) and optical thick line (C II) are mainly contributed by the density variation without significant heating.Conclusions. We therefore provide evidence for the heating of an envelope loop that is affected by accelerating upflows, which are probably launched by magnetic reconnection between small-scale magnetic flux tubes underneath the envelope loop. This study emphasizes that in the complex upper atmosphere of the Sun, the dynamics of the 3D coupled magnetic field and flow field plays a key role in thermalizing 1D structures such as coronal loops.

1993 ◽  
Vol 141 ◽  
pp. 143-146
Author(s):  
K. Petrovay ◽  
G. Szakály

AbstractThe presently widely accepted view that the solar dynamo operates near the base of the convective zone makes it difficult to relate the magnetic fields observed in the solar atmosphere to the fields in the dynamo layer. The large amount of observational data concerning photospheric magnetic fields could in principle be used to impose constraints on dynamo theory, but in order to infer these constraints the above mentioned “missing link” between the dynamo and surface fields should be found. This paper proposes such a link by modeling the passive vertical transport of thin magnetic flux tubes through the convective zone.


2019 ◽  
Vol 489 (1) ◽  
pp. 28-35
Author(s):  
Frederick A Gent ◽  
Ben Snow ◽  
Viktor Fedun ◽  
Robertus Erdélyi

ABSTRACT The magnetic network extending from the photosphere (solar radius ≃ R⊙) to the lower corona ($\mathrm{ R}_\odot +10\, {\rm Mm}$) plays an important role in the heating mechanisms of the solar atmosphere. Here we develop further the models of the authors with realistic open magnetic flux tubes, in order to model more complicated configurations. Closed magnetic loops and combinations of closed and open magnetic flux tubes are modelled. These are embedded within a stratified atmosphere, derived from observationally motivated semi-empirical and data-driven models subject to solar gravity and capable of spanning from the photosphere up into the chromosphere and lower corona. Constructing a magnetic field comprising self-similar magnetic flux tubes, an analytic solution for the kinetic pressure and plasma density is derived. Combining flux tubes of opposite polarity, it is possible to create a steady background magnetic field configuration, modelling a solar atmosphere exhibiting realistic stratification. The result can be applied to the Solar and Heliospheric Observatory Michelson Doppler Imager (SOHO/MDI), Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) and other magnetograms from the solar surface, for which photospheric motions can be simulated to explore the mechanism of energy transport. We demonstrate this powerful and versatile method with an application to HMI data.


2021 ◽  
Author(s):  
Francesco Pecora ◽  
Sergio Servidio ◽  
Antonella Greco ◽  
Stuart D. Bale ◽  
David J. McComas ◽  
...  

<p>Plasma turbulence can be viewed as a magnetic landscape populated by large- and small-scale coherent structures, consisting notionally of magnetic flux tubes and their boundaries. Such structures exist over a wide range of scales and exhibit diverse morphology and plasma properties.  Moreover, interactions of particles with turbulence may involve temporary trapping in, as well as exclusion from, certain regions of space, generally controlled by the topology and connectivity of the magnetic field.  In some cases, such as SEP "dropouts'' the influence of the magnetic structure is dramatic; in other cases, it is more subtle, as in edge effects in SEP confinement. With Parker Solar Probe now closer to the sun than any previous mission, novel opportunities are available for examination of the relationship between magnetic flux structures and energetic particle populations. </p><p>We present a method that is able to characterize both the large- and small-scale structures of the turbulent solar wind, based on the combined use of a filtered magnetic helicity (H<sub>m</sub>) and the partial variance of increments (PVI). The synergistic combination with energetic particle measurements suggests whether these populations are either trapped within or excluded from the helical structure.</p><p>This simple, single-spacecraft technique exploits the natural tendency of flux tubes to assume a cylindrical symmetry of the magnetic field about a central axis. Moreover, large helical magnetic tubes might be separated by small-scale magnetic reconnection events (current sheets) and present magnetic discontinuity with the ambient solar wind. The method was first validated via direct numerical simulations of plasma turbulence and then applied to data from the Parker Solar Probe (PSP) mission. In particular, ISOIS energetic particle (EP) measurements along with FIELDS magnetic field measurements and SWEAP plasma moments, are enabling characterization of observations of EPs closer to their sources than ever before.<br> <br>This novel analysis, combining H<sub>m </sub>and PVI methods, reveals that a large number of flux tubes populate the solar wind and continuously merge in contact regions where magnetic reconnection and particle acceleration may occur. Moreover, the detection of boundaries, correlated with high-energy particle measurements, gives more insights into the nature of such helical structures as "excluding barriers'' suggesting a strong link between particle properties and fields topology. This research is partially supported by the Parker Solar Probe project. </p>


1990 ◽  
Vol 138 ◽  
pp. 263-266
Author(s):  
John H. Thomas ◽  
Benjamin Montesinos

Siphon flows along arched, isolated magnetic flux tubes, connecting photospheric footpoints of opposite magnetic polarity, cause a significant increase in the magnetic field strength of the flux tube due to the decreased internal gas pressure associated with the flow (the Bernoulli effect). These siphon flows offer a possible mechanism for producing intense, inclined, small-scale magnetic structures in the solar photosphere.


2004 ◽  
Vol 22 (1) ◽  
pp. 213-236 ◽  
Author(s):  
O. L. Vaisberg ◽  
L. A. Avanov ◽  
T. E. Moore ◽  
V. N. Smirnov

Abstract. We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c) distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a) type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b) and (c) ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions)


2018 ◽  
Vol 14 (S345) ◽  
pp. 295-296
Author(s):  
Sergey A. Khaibrakhmanov ◽  
Alexander E. Dudorov ◽  
Andrey M. Sobolev

AbstractWe investigate dynamics of slender magnetic flux tubes (MFT) in the accretion disks of young stars. Simulations show that MFT rise from the disk and can accelerate to 20-30 km/s causing periodic outflows. Magnetic field of the disk counteracts the buoyancy, and the MFT oscillate near the disk’s surface with periods of 10-100 days. We demonstrate that rising and oscillating MFT can cause the IR-variability of the accretion disks of young stars.


1996 ◽  
Vol 176 ◽  
pp. 201-216
Author(s):  
Sami K. Solanki

The magnetic field of the Sun is mainly concentrated into intense magnetic flux tubes having field strengths of the order of 1 kG. In this paper an overview is given of the thermal and magnetic properties of these flux tubes, which are known to exhibit a large range in size, from the smallest magnetic elements to sunspots. Differences and similarities between the largest and smallest features are stressed. Some thoughts are also presented on how the properties of magnetic flux tubes are expected to scale from the solar case to that of solar-like stars. For example, it is pointed out that on giants and supergiants turbulent pressure may dominate over gas pressure as the main confining agent of the magnetic field. Arguments are also presented in favour of a highly complex magnetic geometry on very active stars. Thus the very large starspots seen in Doppler images probably are conglomerates of smaller (but possibly still sizable) spots.


Sign in / Sign up

Export Citation Format

Share Document