scholarly journals Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution

2018 ◽  
Vol 615 ◽  
pp. A49 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
A. Vallenari ◽  
R. Sordo ◽  
F. Pensabene ◽  
A. Krone-Martins ◽  
...  

Context. The Tycho-Gaia Astrometric Solution (TGAS) subset of the first Gaia catalogue contains an unprecedented sample of proper motions and parallaxes for two million stars brighter than G ~ 12 mag. Aims. We take advantage of the full astrometric solution available for those stars to identify the members of known open clusters and compute mean cluster parameters using either TGAS or the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions, and TGAS parallaxes. Methods. We apply an unsupervised membership assignment procedure to select high probability cluster members, we use a Bayesian/Markov Chain Monte Carlo technique to fit stellar isochrones to the observed 2MASS JHKS magnitudes of the member stars and derive cluster parameters (age, metallicity, extinction, distance modulus), and we combine TGAS data with spectroscopic radial velocities to compute full Galactic orbits. Results. We obtain mean astrometric parameters (proper motions and parallaxes) for 128 clusters closer than about 2 kpc, and cluster parameters from isochrone fitting for 26 of them located within a distance of 1 kpc from the Sun. We show the orbital parameters obtained from integrating 36 orbits in a Galactic potential.

2021 ◽  
Vol 922 (2) ◽  
pp. 104
Author(s):  
Raymond G. Carlberg ◽  
Carl J. Grillmair

Abstract The proper motions of stars in the outskirts of globular clusters are used to estimate cluster velocity dispersion profiles as far as possible within their tidal radii. We use individual color–magnitude diagrams to select high-probability cluster stars for 25 metal-poor globular clusters within 20 kpc of the Sun, 19 of which have substantial numbers of stars at large radii. Of the 19, 11 clusters have a falling velocity dispersion in the 3–6 half-mass radii range, 6 are flat, and 2 plausibly have a rising velocity dispersion. The profiles are all in the range expected from simulated clusters that started at high redshift in a zoom-in cosmological simulation. The 11 clusters with falling velocity dispersion profiles are consistent with no dark matter above the Galactic background. The six clusters with approximately flat velocity dispersion profiles could have local dark matter, but are ambiguous. The two clusters with rising velocity dispersion profiles are consistent with a remnant local dark matter halo, but need membership confirmation and detailed orbital modeling to further test these preliminary results.


2013 ◽  
Vol 8 (S299) ◽  
pp. 52-53
Author(s):  
Kyle Mede ◽  
Timothy D. Brandt

AbstractRecent simulation and observational data have been used to investigate the ability of Kozai oscillations to explain the formation of “hot Jupiter” planetary systems. One of the first exoplanets discovered, τ Boo Ab, orbits a star with a binary companion, making it an excellent testbed for this scenario. We have written a three-dimensional Markov Chain Monte Carlo (MCMC) simulator to constrain the orbit of the distant stellar companion τ Boo B, and are currently deriving orbital parameters and confidence intervals. These orbital parameters will confirm or reject Kozai oscillations as a plausible formation mechanism for τ Boo Ab.


2018 ◽  
Vol 616 ◽  
pp. A37 ◽  
Author(s):  
C. A. L. Bailer-Jones ◽  
J. Rybizki ◽  
R. Andrae ◽  
M. Fouesneau

Passing stars may play an important role in the evolution of our solar system. We search for close stellar encounters to the Sun among all 7.2 million stars in Gaia DR2 that have six-dimensional phase space data. We characterize encounters by integrating their orbits through a Galactic potential and propagating the correlated uncertainties via a Monte Carlo resampling. After filtering to remove spurious data, we find 694 stars that have median (over uncertainties) closest encounter distances within 5 pc, all occurring within 15 Myr from now. 26 of these have at least a 50% chance of coming closer than 1 pc (and 7 within 0.5 pc), all but one of which are newly discovered here. We confirm some and refute several other previously-identified encounters, confirming suspicions about their data. The closest encounter in the sample is Gl 710, which has a 95% probability of coming closer than 0.08 pc (17 000 AU). Taking mass estimates obtained from Gaia astrometry and multiband photometry for essentially all encounters, we find that Gl 710 also has the largest impulse on the Oort cloud. Using a Galaxy model, we compute the completeness of the Gaia DR2 encountering sample as a function of perihelion time and distance. Only 15% of encounters within 5 pc occurring within ±5 Myr of now have been identified, mostly due to the lack of radial velocities for faint and/or cool stars. Accounting for the incompleteness, we infer the present rate of encounters within 1 pc to be 19.7 ± 2.2 per Myr, a quantity expected to scale quadratically with the encounter distance out to at least several pc. Spuriously large parallaxes in our sample from imperfect filtering would tend to inflate both the number of encounters found and this inferred rate. The magnitude of this effect is hard to quantify.


2007 ◽  
Vol 3 (S246) ◽  
pp. 115-116
Author(s):  
S. Röser ◽  
N. V. Kharchenko ◽  
A. E. Piskunov ◽  
E. Schilbach ◽  
R.-D. Scholz

AbstractWe present a volume-limited sample (d < 850 pc) of open clusters in the Galaxy identified from our studies on galactic open clusters based on data from the all-sky catalogue ASCC-2.5 with absolute proper motions and B, V magnitudes of 2.5 million stars. The astrophysical properties of this sample are discussed.


2019 ◽  
Vol 623 ◽  
pp. A108 ◽  
Author(s):  
D. Bossini ◽  
A. Vallenari ◽  
A. Bragaglia ◽  
T. Cantat-Gaudin ◽  
R. Sordo ◽  
...  

Context. The Gaia Second Data Release provides precise astrometry and photometry for more than 1.3 billion sources. This catalog opens a new era concerning the characterization of open clusters and test stellar models, paving the way for better understanding of the disk properties. Aims. The aim of the paper is to improve the knowledge of cluster parameters, using only the unprecedented quality of the Gaia photometry and astrometry. Methods. We have made use of the membership determination based on the precise Gaia astrometry and photometry. We applied an automated Bayesian tool, BASE-9, to fit stellar isochrones on the observed G, GBP, GRP magnitudes of the high probability member stars. Results. We derive parameters such as age, distance modulus, and extinction for a sample of 269 open clusters, selecting only low reddening objects and discarding very young clusters, for which techniques other than isochrone-fitting are more suitable for estimating ages.


1996 ◽  
Vol 169 ◽  
pp. 697-702 ◽  
Author(s):  
B. Dauphole ◽  
J. Colin ◽  
M. Geffert ◽  
M. Odenkirchen ◽  
H.-J. Tucholke

We present here a new analytical Galactic potential. We used the constraint of galactic globular cluster dynamics compared to their spatial distribution. This was done with the help of the globular clusters' proper motions. The result for the clusters dynamics show a better agreement between orbital parameters and statistical distribution of the studied globular clusters than in previous published potentials. The globular cluster dynamics constrain the mass distribution on a large scale, until 40 kpc from the centre. In this model, the total mass for the Milky Way is 7.9 1011 M⊙.


1988 ◽  
Vol 133 ◽  
pp. 501-504
Author(s):  
Zhen-Guo Yao ◽  
Clayton Smith

Using observations of the sun made with the Washington six-inch transit circle from 1911 to 1971, equator and equinox corrections based on Newcomb's, DE102, and DE200 ephemerides are given for each of six catalogs of results of observations made during that period. Each of these catalogs was observed and discussed fundamentally, that is, in such a way as to decouple the system of the catalog positions from dependence on previously given systems of catalog positions and proper motions.Variations of the solutions for the equator and equinox corrections and of earth orbital parameters including corrections to the ephemeris mean longitude of the sun, the mean obliquity of the ecliptic, the mean longitude of perihelion, and the mean eccentricity of the earth's orbit are discussed for solutions based on the independent catalog systems and on the catalog systems referred to the FK4 and to an improved FK4 in which an epoch dependent correction to the right ascension zero point has been applied.


2021 ◽  
Vol 162 (6) ◽  
pp. 285
Author(s):  
Isabel Lipartito ◽  
John I. Bailey III ◽  
Timothy D. Brandt ◽  
Benjamin A. Mazin ◽  
Mario Mateo ◽  
...  

Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara, a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


2019 ◽  
Vol 62 (3) ◽  
pp. 577-586 ◽  
Author(s):  
Garnett P. McMillan ◽  
John B. Cannon

Purpose This article presents a basic exploration of Bayesian inference to inform researchers unfamiliar to this type of analysis of the many advantages this readily available approach provides. Method First, we demonstrate the development of Bayes' theorem, the cornerstone of Bayesian statistics, into an iterative process of updating priors. Working with a few assumptions, including normalcy and conjugacy of prior distribution, we express how one would calculate the posterior distribution using the prior distribution and the likelihood of the parameter. Next, we move to an example in auditory research by considering the effect of sound therapy for reducing the perceived loudness of tinnitus. In this case, as well as most real-world settings, we turn to Markov chain simulations because the assumptions allowing for easy calculations no longer hold. Using Markov chain Monte Carlo methods, we can illustrate several analysis solutions given by a straightforward Bayesian approach. Conclusion Bayesian methods are widely applicable and can help scientists overcome analysis problems, including how to include existing information, run interim analysis, achieve consensus through measurement, and, most importantly, interpret results correctly. Supplemental Material https://doi.org/10.23641/asha.7822592


Sign in / Sign up

Export Citation Format

Share Document