scholarly journals Characterization of Omega-WINGS galaxy clusters

2018 ◽  
Vol 609 ◽  
pp. A133 ◽  
Author(s):  
S. Cariddi ◽  
M. D’Onofrio ◽  
G. Fasano ◽  
B. M. Poggianti ◽  
A. Moretti ◽  
...  

Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims. Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods. We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results. We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions. We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color–magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.

2019 ◽  
Vol 629 ◽  
pp. A82
Author(s):  
A. Tümer ◽  
F. Tombesi ◽  
H. Bourdin ◽  
E. N. Ercan ◽  
M. Gaspari ◽  
...  

Context. The study of the brightest cluster galaxy (BCG) coronae embedded in noncool core (NCC) galaxy clusters is crucial to understand the BCG’s role in galaxy cluster evolution as well as the activation of the self-regulated cooling and heating mechanism in the central regions of galaxy clusters. Aims. We explore the X-ray properties of the intracluster medium (ICM) of the NCC galaxy cluster MKW 08 and the BCG corona, along with their interface region. With recent and deep archival Chandra observations, we study the BCG corona in detail, and with archival XMM-Newton observations, we investigate the implications of the central active galactic nuclei (AGN) on the BCG. Methods. We carry out imaging and spectral analyses of MKW 08 with archival XMM-Newton and Chandra X-ray observations. Results. Our spectral analysis suggests the presence of a central AGN by a power-law with a photon index of Γ ≃ 1.8 at the core of its BCG. Although the ICM does not exhibit a cluster scale cool core, the BCG manifests itself as a mini cool core characterized by a cooling time as short as 64 Myr at r = 3 kpc centered at the galaxy. The isothermality of the BCG corona seems to favor mechanical feedback from the central AGN as the major source of gas heating. The gas pressure profile of this mini cool core suggests that the BCG coronal gas reaches pressure equilibrium with the hotter and less dense ICM inside an interface of nearly constant pressure, delimited by radii 4 ≤ r ≤ 10 kpc at the galactic center. As revealed by the presence of a metal enriched tail (Z ≃ 0.5–0.9 Z⊙) extending up to 40 kpc, the BCG corona seems to be experiencing ram-pressure stripping by the surrounding ICM and/or interacting with a nearby galaxy, IC 1042.


2007 ◽  
Vol 3 (S244) ◽  
pp. 167-175
Author(s):  
Anthony H. Gonzalez ◽  
Dennis Zaritsky ◽  
Ann I. Zabludoff

AbstractWhile the baryon fraction in galaxy groups and clusters may be expected to reflect the universal value, observations of cluster baryon fractions have generally fallen short of this expectation and indicated a possible correlation with cluster mass. We present a new determination of the total baryon budget in nearby galaxy groups and clusters that includes the contributions from stars in galaxies, intracluster stars, and the intracluster medium. We find that the baryon mass fraction within r500 is independent of system mass and lower than the WMAP value. We conclude however that the present shortfall provides no compelling evidence for additional missing baryons, since it may arise due to a theoretically predicted deficit of baryons within r500 and systematic uncertainties associated with the mass determinations. With the addition of the ICL to the stellar mass in galaxies, the increase in X-ray gas mass fraction with increasing total mass is entirely accounted for by a decrease in the total stellar mass fraction, supporting the argument that the behavior of both the stellar and X-ray gas components is dominated by a decrease in star formation efficiency in more massive environments. Within just the stellar component, the fraction of the total stellar luminosity in the central, giant brightest cluster galaxy (BCG) and ICL (hereafter the BCG+ICL component) decreases as velocity dispersion (σ) increases, suggesting that ICL may grow less efficiently in higher mass environments. The identification of low mass groups with large BCG+ICL components also demonstrates that the massive cluster environment is not required to form intracluster stars. These proceedings are a condensed version of the work presented in Gonzalez, Zaritsky & Zabludoff (2007), and we refer the reader to that paper for a more complete discussion.


2020 ◽  
Vol 499 (4) ◽  
pp. 5791-5805
Author(s):  
M Gendron-Marsolais ◽  
J Hlavacek-Larrondo ◽  
R J van Weeren ◽  
L Rudnick ◽  
T E Clarke ◽  
...  

ABSTRACT We present the first high-resolution 230–470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved have allowed the identification of previously unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyse complex radio sources harboured in the cluster. Two new distinct, narrowly collimated jets are visible in IC 310, consistent with a highly projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behaviour, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head–tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.


2017 ◽  
Vol 467 (4) ◽  
pp. 4410-4423 ◽  
Author(s):  
I. Agulli ◽  
J. A. L. Aguerri ◽  
A. Diaferio ◽  
L. Dominguez Palmero ◽  
R. Sánchez-Janssen

2009 ◽  
Vol 5 (H15) ◽  
pp. 88-88
Author(s):  
Roberto P. Muñoz ◽  
L. F. Barrientos ◽  
B. P. Koester ◽  
D. G. Gilbank ◽  
M. D. Gladders ◽  
...  

AbstractWe use deep nIR imaging of 15 galaxy clusters at z ≃ 1 to study the build-up of the red-sequence in rich clusters since the Universe was half its present age. We measured, for the first time, the luminous-to-faint ratio of red-sequence galaxies at z=1 from a large ensemble of clusters, and found an increase of 100% in the ratio of luminous-to-faint red-sequence galaxies from z=0.45 to 1.0. The measured change in this ratio as function of redshift is well-reproduced by a simple evolutionary model developed in this work, that consists in an early truncation of the star formation for bright cluster galaxies and a delayed truncation for faint cluster galaxies.


2011 ◽  
Vol 416 (3) ◽  
pp. 2027-2040 ◽  
Author(s):  
Mohamed H. Abdullah ◽  
Gamal B. Ali ◽  
H. A. Ismail ◽  
Mohamed A. Rassem

2010 ◽  
Vol 10 (10) ◽  
pp. 1005-1012 ◽  
Author(s):  
Li-Yi Gu ◽  
Yu Wang ◽  
Jun-Hua Gu ◽  
Jing-Ying Wang ◽  
Zhen-Zhen Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document