scholarly journals Measurement of the solar system acceleration using the Earth scale factor

2018 ◽  
Vol 610 ◽  
pp. A36 ◽  
Author(s):  
O. Titov ◽  
H. Krásná

Aim. We propose an alternative method to detect the secular aberration drift induced by the solar system acceleration due to the attraction to the Galaxy centre. This method is free of the individual radio source proper motion caused by intrinsic structure variation. Methods. We developed a procedure to estimate the scale factor directly from very long baseline interferometry (VLBI) data analysis in a source-wise mode within a global solution. The scale factor is estimated for each reference radio source individually as a function of astrometric coordinates (right ascension and declination). This approach splits the systematic dipole effect and uncorrelated motions on the level of observational parameters. Results. We processed VLBI observations from 1979.7 to 2016.5 to obtain the scale factor estimates for more than 4000 reference radio sources. We show that the estimates highlight a dipole systematics aligned with the direction to the centre of the Galaxy. With this method we obtained a Galactocentric acceleration vector with an amplitude of 5.2 ± 0.2 μas/yr and direction αG = 281∘± 3∘ and δG = −35∘± 3∘.

2018 ◽  
Vol 620 ◽  
pp. A160 ◽  
Author(s):  
N. Liu ◽  
S. B. Lambert ◽  
Z. Zhu

Aims. We propose to estimate the accuracy of current very long baseline interferometry (VLBI) catalogs. Methods. The difference of source position estimated from two decimation solutions was analyzed to estimate the scale factor and noise floor for the formal error of radio source positions by two different methods. In one method, we investigated the weighted root-square-mean (wrms) scatter of source positional differences versus the number of observed sessions; for the other one, we compared the wrms difference versus the formal error. Based on the estimated noise floor and scale factor, we determined the realistic error of radio source positions in the standard solution and compared it with that of Gaia DR2 and ICRF2 catalogs. Results. The estimated scale factors from two methods are rather consistent, which is of ∼1.3 in both coordinates. As for the noise floor, it is estimated to be 20–25 μas for sources observed in at least ten sessions, and it could reduce down to ∼10 μas for sources which have been observed more than 1000 times. The inflated median formal error of our solution is of the same order as the Gaia DR2 catalog in declination and the direction of major axis of the error ellipse, but smaller by a factor of two in right ascension. With respect to the ICRF2 catalog, our solution yields an improved accuracy by a factor of about three. Conclusions. Currently, the VLBI radio source catalog still provides source positions with the best accuracy which is about 20–25 μas. Moreover, the noise floor of VLBI catalogs could potentially reach 10 μas with more observations in the future.


2019 ◽  
Vol 630 ◽  
pp. A101 ◽  
Author(s):  
M. Karbon ◽  
A. Nothnagel

Context. We present a celestial reference frame (CRF) based on the combination of independent, multifrequency radio source position catalogs using nearly 40 years of very long baseline interferometry observations at the standard geodetic frequencies at SX band and about 15 years of observations at higher frequencies (K and XKa). The final catalog contains 4617 sources. Aims. We produce a multifrequency catalog of radio source positions with full variance–covariance information across all radio source positions of all input catalogs. Methods. We combined three catalogs, one observed at 8 GHz (X band), one at 24 GHz (K band) and one at 32 GHz (Ka band). Rather than only using the radio source positions, we developed a new, rigorous combination approach by carrying over the full covariance information through the process of adding normal equation systems. Special validation routines were used to characterize the random and systematic errors between the input reference frames and the combined catalog. Results. The resulting CRF contains precise positions of 4617 compact radio astronomical objects, 4536 measured at 8 GHz, 824 sources also observed at 24 GHz, and 674 at 32 GHz. The frame is aligned with ICRF3 within ±3 μas and shows an average positional uncertainty of 0.1 mas in right ascension and declination. No significant deformations can be identified. Comparisons with Gaia-CRF remain inconclusive, nonetheless significant differences between all frames can be attested.


1972 ◽  
Vol 44 ◽  
pp. 74-74
Author(s):  
M. Guélin ◽  
L. Weliachew

A neutral hydrogen survey of the irregular galaxy M82 has been carried out with the transit radio telescope at Nançay, France. The resolving power was 4′ in right ascension and 34′ in declination. The velocity resolution was 59 km s−1.Drift scans covering 58′ in right ascension were taken across the center of the galaxy where the radio source is located; fourteen scans were averaged.Line profiles were derived every 2′ in right ascension. The profiles at ±4′ from the radio source are similar within the measurement errors. In particular, they do not show any rotation effect within ±15 km s−1. They were averaged in order to provide an estimate of the expected emission profile at the radio source position.Subtraction of this average from the line profile measured in front of the radio source yielded significant negative temperatures at all velocities from 180 to 360 km s−1 and no positive temperatures at other velocities.These negative temperatures were assigned to absorption of the radiation from the radio source by neutral hydrogen in M82.Absorption is running from 3 to 6% in depth. The average velocity of the absorption profile is lying between the central emission velocity and the optically-determined velocity which are known to show a large disagreement.The width of the absorption profile shows a velocity gradient of 200 km s−1 across the 35′ × 20′ radio source. Such a large velocity spread across this angular extent is only shown by the excited gas showing emission lines at optical wavelengths (Burbidge et al., 1964).Since then, the absorption in M82 at the neutral hydrogen wavelength has been confirmed by measurements done with the Owens Valley Radio interferometer at 2 spacings where any emission is completely resolved (interfringes were 3′ and 1′.5).In addition to the conclusions of the single dish observations done at Nançay, the interferometer data have shown that the steeper velocity gradient occurs along the major axis of the galaxy which coincides with the major axis of the radio source.


2018 ◽  
Vol 612 ◽  
pp. A109
Author(s):  
K. É. Gabányi ◽  
S. Frey ◽  
T. An

Context. The Fermi Large Area Telescope revealed that the extragalactic γ-ray sky is dominated by blazars, active galactic nuclei (AGN) whose jet is seen at very small angle to the line of sight. To associate and then classify the γ-ray sources, data have been collected from lower frequency surveys and observations. Since those have superior angular resolution and positional accuracy compared to the γ-ray observations, some associations are not straightforward. Aims. The γ-ray source 3FGL J1323.0+2942 is associated with the radio source 4C+29.48 and classified as a blazar of unknown type, lacking optical spectrum and redshift. The higher-resolution radio data showed that 4C+29.48 comprises three bright radio-emitting features located within a ~1′-diameter area. We aim to reveal their nature and pinpoint the origin of the γ-ray emission. Methods. We (re-)analyzed archival Very Large Array (VLA) and unpublished very long baseline interferometry (VLBI) observations conducted by the Very Long Baseline Array (VLBA) and the European VLBI Network of 4C+29.48. We also collected data form optical, infrared and X-ray surveys. Results. According to the VLBI data, the northernmost complex of 4C+29.48 contains a blazar with a high brightness temperature compact core and a steep-spectrum jet feature. The blazar is positionally coincident with an optical source at a redshift of 1.142. Its mid-infrared colors also support its association with a γ-ray emitting blazar. The two other radio complexes have steep radio spectra similar to AGN-related lobes and do not have optical or infrared counterparts in currently available surveys. Based on the radio morphology, they are unlikely to be related to the blazar. There is an optical source between the two radio features, also detected in infrared wavebands. We discuss the possibilities whether the two radio features are lobes of a radio galaxy, or gravitationally lensed images of a background source. Conclusions. We propose to associate the γ-ray source 3FGL J1323.0+2942 in subsequent versions of the Fermi catalog with the blazar residing in northernmost complex. We suggest naming this radio source J1323+2941A to avoid misinterpretation arising from the fact that the coordinates of the currently listed radio counterpart 4C+29.48 is closer to a most probably unrelated radio source.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Nature ◽  
1965 ◽  
Vol 207 (5003) ◽  
pp. 1282-1282 ◽  
Author(s):  
LEONARD SEARLE
Keyword(s):  

2002 ◽  
Vol 12 ◽  
pp. 124-125 ◽  
Author(s):  
V. Dehant ◽  
M. Feissel ◽  
O. de Viron ◽  
M. Yseboodt ◽  
Ch. Bizouard

The recent theoretical developments have provided accurate series of nutations, which are close to the Very Long Baseline Interferometry (VLBI) data. At the milliarcsecond (mas) level, three series are available: MHB2000 (Mathews et al. 2000), FG2000 (Getino and Ferrándiz 2000), and SF2000 (Shirai and Fukushima 2000a,b) (see Dehant 2000, and in this volume, for more information and for a short description of these models).In the first part of our work we have compared these models with the (VLBI) observations (Ma et al. 2000) by computing rms of the residuals for several time intervals of measurements. We have concluded that these series have comparable precision.


2018 ◽  
Vol 616 ◽  
pp. A128 ◽  
Author(s):  
N. Herrera Ruiz ◽  
E. Middelberg ◽  
A. Deller ◽  
V. Smolčić ◽  
R. P. Norris ◽  
...  

We present very long baseline interferometry (VLBI) observations of 179 radio sources in the COSMOS field with extremely high sensitivity using the Green Bank Telescope (GBT) together with the Very Long Baseline Array (VLBA) (VLBA+GBT) at 1.4 GHz, to explore the faint radio population in the flux density regime of tens of μJy. Here, the identification of active galactic nuclei (AGN) is based on the VLBI detection of the source, meaning that it is independent of X-ray or infrared properties. The milli-arcsecond resolution provided by the VLBI technique implies that the detected sources must be compact and have large brightness temperatures, and therefore they are most likely AGN (when the host galaxy is located at z ≥ 0.1). On the other hand, this technique only allows us to positively identify when a radio-active AGN is present, in other words, we cannot affirm that there is no AGN when the source is not detected. For this reason, the number of identified AGN using VLBI should be always treated as a lower limit. We present a catalogue containing the 35 radio sources detected with the VLBA+GBT, ten of which were not previously detected using only the VLBA. We have constructed the radio source counts at 1.4 GHz using the samples of the VLBA and VLBA+GBT detected sources of the COSMOS field to determine a lower limit for the AGN contribution to the faint radio source population. We found an AGN contribution of >40−75% at flux density levels between 150 μJy and 1 mJy. This flux density range is characterised by the upturn of the Euclidean-normalised radio source counts, which implies a contribution of a new population. This result supports the idea that the sub-mJy radio population is composed of a significant fraction of radio-emitting AGN, rather than solely by star-forming galaxies, in agreement with previous studies.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 108
Author(s):  
Simona Giacintucci ◽  
Tracy Clarke ◽  
Namir E. Kassim ◽  
Wendy Peters ◽  
Emil Polisensky

We present VLA Low-band Ionosphere and Transient Experiment (VLITE) 338 MHz observations of the galaxy cluster CL 0838+1948. We combine the VLITE data with Giant Metrewave Radio Telescope 610 MHz observations and survey data. The central galaxy hosts a 250 kpc source whose emission is dominated by two large lobes at low frequencies. At higher frequencies, a pair of smaller lobes (∼30 kpc) is detected within the galaxy optical envelope. The observed morphology is consistent with a restarted radio galaxy. The outer lobes have a spectral index αout=1.6, indicating that they are old, whereas the inner lobes have αinn=0.6, typical for an active source. Spectral modeling confirms that the outer emission is a dying source whose nuclear activity switched off not more than 110 Myr ago. Using archival Chandra X-ray data, we compare the radio and hot gas emission. We find that the active radio source is contained within the innermost and X-ray brightest region, possibly a galactic corona. Alternatively, it could be the remnant of a larger cool core whose outer layers have been heated by the former epoch of activity that has generated the outer lobes.


Sign in / Sign up

Export Citation Format

Share Document