scholarly journals Simultaneous Hα and dust reverberation mapping of 3C 120: Testing the bowl-shaped torus geometry

2018 ◽  
Vol 620 ◽  
pp. A137 ◽  
Author(s):  
Michael Ramolla ◽  
Martin Haas ◽  
Christian Westhues ◽  
Francisco Pozo Nuñez ◽  
Catalina Sobrino Figaredo ◽  
...  

We monitored the Seyfert-1 galaxy 3C 120 between September 2014 and March 2015 at the Universitätssternwarte Bochum near Cerro Armazones in BVRIJK and a narrowband filter covering the redshifted Hα line. In addition we obtained a single contemporary spectrum with the spectrograph FAST at Mt. Hopkins. Compared to earlier epochs 3C 120 is about a factor of three brighter, allowing us to study the shape of the broad line region (BLR) and the dust torus in a high luminosity phase. The analysis of the light curves yields that the dust echo is rather sharp and symmetric in contrast to the more complex broad Hα BLR echo. We investigated how far this supports an optically thick bowl-shaped BLR and dust torus geometry. The comparison with several parameterizations of these models supports the following geometry: The BLR clouds lie inside the bowl closely above the bowl rim up to a halfcovering angle 0° < θ <  40° (measured against the equatorial plane). Then the BLR is spread over many isodelay surfaces, yielding a smeared and structured echo as observed. Furthermore, if the BLR clouds shield the bottom of the bowl rim against radiation from the nucleus, the hot dust emission comes essentially from the top edge of the bowl (40° < θ <  45°). Then, for small inclinations as for 3C120, the top dust edge forms a ring that largely coincides with a narrow range of isodelay surfaces, yielding the observed sharp dust echo. The scale height of the BLR increases with radial distance from the black hole (BH). This leads to luminosity dependent foreshortening effects of the lag. We discuss the implications and possible corrections of the foreshortening for the BH mass determination and consequences for the lag (size)–luminosity relationships and the difference from interferometric torus sizes.

Author(s):  
F Pozo Nuñez ◽  
N Gianniotis ◽  
J Blex ◽  
T Lisow ◽  
R Chini ◽  
...  

Abstract We present the results of a two year optical continuum photometric reverberation mapping campaign carried out on the nucleus of the Seyfert-1 galaxy Mrk509. Specially designed narrow-band filters were used in order to mitigate the line and pseudo-continuum contamination of the signal from the broad line region, while allowing for high-accuracy flux-calibration over a large field of view. We obtained light curves with a sub-day time sampling and typical flux uncertainties of 1%. The high photometric precision allowed us to measure inter-band continuum time delays of up to ∼2 days across the optical range. The time delays are consistent with the relation τ∝λ4/3 predicted for an optically thick and geometrically thin accretion disk model. The size of the disk is, however, a factor of 1.8 larger than predictions based on the standard thin-disk theory. We argue that, for the particular case of Mrk509, a larger black hole mass due to the unknown geometry scaling factor can reconcile the difference between the observations and theory.


2009 ◽  
Vol 5 (S267) ◽  
pp. 198-198 ◽  
Author(s):  
Ismael Botti ◽  
Paulina Lira ◽  
Hagai Netzer ◽  
Shai Kaspi

AbstractWe present a monitoring campaign on high-luminosity quasars which will extend the existing reverberation mapping results by two orders of magnitude in luminosity, probing the broad-line region size and black hole mass of luminous AGN at redshift ~ 2 – 3.


Author(s):  
Suk Yee Yong ◽  
Rachel L. Webster ◽  
Anthea L. King ◽  
Nicholas F. Bate ◽  
Matthew J. O’Dowd ◽  
...  

AbstractThe structure and kinematics of the broad line region in quasars are still unknown. One popular model is the disk-wind model that offers a geometric unification of a quasar based on the viewing angle. We construct a simple kinematical disk-wind model with a narrow outflowing wind angle. The model is combined with radiative transfer in the Sobolev, or high velocity, limit. We examine how angle of viewing affects the observed characteristics of the emission line. The line profiles were found to exhibit distinct properties depending on the orientation, wind opening angle, and region of the wind where the emission arises.At low inclination angle (close to face-on), we find that the shape of the emission line is asymmetric, narrow, and significantly blueshifted. As the inclination angle increases (close to edge-on), the line profile becomes more symmetric, broader, and less blueshifted. Additionally, lines that arise close to the base of the disk wind, near the accretion disk, tend to be broad and symmetric. Single-peaked line profiles are recovered for the intermediate and equatorial wind. The model is also able to reproduce a faster response in either the red or blue sides of the line profile, consistent with reverberation mapping studies.


2009 ◽  
Vol 5 (S267) ◽  
pp. 151-160 ◽  
Author(s):  
Bradley M. Peterson

AbstractWe review briefly direct and indirect methods of measuring the masses of black holes in galactic nuclei, and then focus attention on supermassive black holes in active nuclei, with special attention to results from reverberation mapping and their limitations. We find that the intrinsic scatter in the relationship between the AGN luminosity and the broad-line region size is very small, ~0.11 dex, comparable to the uncertainties in the better reverberation measurements. We also find that the relationship between reverberation-based black hole masses and host-galaxy bulge luminosities also seems to have surprisingly little intrinsic scatter, ~0.17 dex. We note, however, that there are still potential systematics that could affect the overall mass calibration at the level of a factor of a few.


2012 ◽  
Vol 12 (10) ◽  
pp. 27667-27691
Author(s):  
I. Tegen ◽  
K. Schepanski ◽  
B. Heinold

Abstract. A regional-scale dust model is used to simulate Saharan dust emissions and atmospheric distributions in the years 2007 and 2008. The model results are compared to dust source activation events compiled from infrared dust index imagery from the geostationary Meteosat Second Generation (MSG) satellite. The observed morning maximum in dust source activation frequencies indicates that the breakdown of nocturnal low-level jets is responsible for a considerable number of dust source activation events in the Sahara. The comparison shows that the time of the day of the onset of dust emission is delayed in the model compared to the observations. Also, the simulated number of dust emission events associated with nocturnal low level jets in mountainous regions is underestimated in the model. The MSG dust index observations indicate a strong increase in dust source activation frequencies in the year 2008 compared to 2007, the difference between the two years is less pronounced in the model. The quantitative comparison of simulated dust optical thicknesses with observations at stations of the sunphotometer network AERONET shows, however, good agreement for both years, indicating that the number of observed dust activation events is only of limited use for estimating actual dust emission fluxes in the Sahara.


2013 ◽  
Vol 13 (5) ◽  
pp. 2381-2390 ◽  
Author(s):  
I. Tegen ◽  
K. Schepanski ◽  
B. Heinold

Abstract. A regional-scale dust model is used to simulate Saharan dust emissions and atmospheric distributions in the years 2007 and 2008. The model results are compared to dust source activation events compiled from infrared dust index imagery from the geostationary Meteosat Second Generation (MSG) satellite. The observed morning maximum in dust source activation frequencies indicates that the breakdown of nocturnal low level jets is an important mechanism for dust source activation in the Sahara. The comparison shows that the time of the day of the onset of dust emission is delayed in the model compared to the observations. Also, the simulated number of dust emission events associated with nocturnal low level jets in mountainous regions is underestimated in the model. The MSG dust index observations indicate a strong increase in dust source activation frequencies in the year 2008 compared to 2007. The difference between the two years is less pronounced in the model. Observations of dust optical thickness, e.g. at stations of the sunphotometer network AERONET, do not show such increase, in agreement with the model results. This indicates that the number of observed dust activation events is only of limited use for estimating actual dust emission fluxes in the Sahara. The ability to reproduce interannual variability of Saharan dust with models remains an important challenge for understanding the controls of the atmospheric dust load.


1997 ◽  
Vol 159 ◽  
pp. 138-145
Author(s):  
D. Maoz

AbstractI review what we have learned about the BLR from reverberation mapping, point to some problems and complications that have emerged, and outline some future directions.


1956 ◽  
Vol 34 (1) ◽  
pp. 25-38
Author(s):  
J. Gordin Kaplan ◽  
Woon-Ki Paik

The rate with which n-butanol alters the properties of yeast catalase has been studied as a function of temperature and concentration of altering agent. Activation energies for catalase alteration lay within the rather narrow range of 20–23 kcal./mole, thus confirming a prediction made previously on the basis of the difference in energies of activation for heat destruction of altered and unaltered catalases. Alteration by optimal concentration of butanol was a reaction of zero order. Chloroform also altered yeast catalase with an activation energy within this range of μ values. The close agreement in μ values leads us to conclude that the action of these two altering agents, at all concentrations, is characterized by the same rate-limiting step, even though their action differs in other respects. It was concluded that catalase alteration is probably all-or-none on the molecular level, rather than on the cellular level. Alteration was invariably accompanied by a decrease in the size of the treated cells; alteration was sometimes accompanied by changes in the cytochrome spectrum, but there was no causal connection between these two events. These data are consistent with the interfacial hypothesis, which, in its present crude form, pictures alteration as consisting essentially in the desorption of catalase from some intracellular interface at which it is normally bound in the intact cell.


2018 ◽  
Vol 14 (S342) ◽  
pp. 270-271
Author(s):  
C. Alenka Negrete ◽  
Deborah Dultzin ◽  
Paola Marziani ◽  
Jack W. Sulentic ◽  
M. L. Martínez-Aldama

AbstractWe present a method that uses photoionization codes (CLOUDY) to estimate the supermassive black hole masses (MBH) for quasars at low and high redshift. This method is based on the determination of the physical conditions of the broad line region (BLR) using observational diagnostic diagrams from line ratios in the UV. We also considered that the density and metallicity of the BLR in quasars at high z could be different from those at the nearby Universe. The computed black hole masses obtained using this method are in agreement with those derived from the method of reverberation mapping.


Sign in / Sign up

Export Citation Format

Share Document