scholarly journals Resolving the hydrostatic mass profiles of galaxy clusters at z ∼ 1 with XMM-Newton and Chandra

2018 ◽  
Vol 617 ◽  
pp. A64 ◽  
Author(s):  
I. Bartalucci ◽  
M. Arnaud ◽  
G.W. Pratt ◽  
A. M. C. Le Brun

We present a detailed study of the integrated total hydrostatic mass profiles of the five most massive M500SZ < 5 × 1014 M⊙ galaxy clusters selected at z ∼ 1 via the Sunyaev–Zel’dovich effect. These objects represent an ideal laboratory to test structure formation models where the primary driver is gravity. Optimally exploiting spatially-resolved spectroscopic information from XMM-Newton and Chandra observations, we used both parametric (forward, backward) and non-parametric methods to recover the mass profiles, finding that the results are extremely robust when density and temperature measurements are both available. Our X-ray masses at R500 are higher than the weak lensing masses obtained from the Hubble Space Telescope (HST), with a mean ratio of 1.39−0.35+0.47. This offset goes in the opposite direction to that expected in a scenario where the hydrostatic method yields a biased, underestimated, mass. We investigated halo shape parameters such as sparsity and concentration, and compared to local X-ray selected clusters, finding hints for evolution in the central regions (or for selection effects). The total baryonic content is in agreement with the cosmic value at R500. Comparison with numerical simulations shows that the mass distribution and concentration are in line with expectations. These results illustrate the power of X-ray observations to probe the statistical properties of the gas and total mass profiles in this high mass, high-redshift regime.

2018 ◽  
Vol 14 (S342) ◽  
pp. 145-148
Author(s):  
Elias Koulouridis ◽  

AbstractWe present the results of a study of the AGN density in a homogeneous and well studied sample of 167 bona-fide X-ray galaxy clusters (0.1<z<0.5). Our aim is to study the AGN activity in 167 XXL X-ray galaxy clusters as a function of the cluster mass and the location of the AGN in the cluster. We report a significant AGN excess in our low-mass cluster sub-sample between 0.5r500 and 2r500. In contrast, the high-mass sub-sample presents no AGN excess. The AGN excess in poor clusters indicates AGN triggering, supporting previous studies that reported enhanced galaxy merging in the cluster outskirts. This effect is probably prevented by high velocity dispersions in high-mass clusters. Comparing also with previous studies of massive or high-redshift clusters, we conclude that the AGN fraction in cluster galaxies anti-correlates strongly with cluster mass.


2016 ◽  
Vol 25 (10) ◽  
pp. 1630023 ◽  
Author(s):  
Elia S. Battistelli ◽  
Carlo Burigana ◽  
Paolo de Bernardis ◽  
Alexander A. Kirillov ◽  
Gastao B. Lima Neto ◽  
...  

In recent years, significant progress has been made in building new galaxy clusters samples, at low and high redshifts, from wide-area surveys, particularly exploiting the Sunyaev–Zel’dovich (SZ) effect. A large effort is underway to identify and characterize these new systems with optical/NIR and X-ray facilities, thus opening new avenues to constraint cosmological models using structure growth and geometrical tests. A census of galaxy clusters sets constraints on reionization mechanisms and epochs, which need to be reconciled with recent limits on the reionization optical depth from cosmic microwave background (CMB) experiments. Future advances in SZ effect measurements will include the possibility to (unambiguously) measure directly the kinematic SZ effect, to build an even larger catalogue of galaxy clusters able to study the high redshift universe, and to make (spatially-)resolved galaxy cluster maps with even spectral capability to (spectrally-)resolve the relativistic corrections of the SZ effect.


2007 ◽  
Vol 472 (3) ◽  
pp. 739-748 ◽  
Author(s):  
M. Branchesi ◽  
I. M. Gioia ◽  
C. Fanti ◽  
R. Fanti
Keyword(s):  

2010 ◽  
Vol 524 ◽  
pp. A68 ◽  
Author(s):  
S. Ettori ◽  
F. Gastaldello ◽  
A. Leccardi ◽  
S. Molendi ◽  
M. Rossetti ◽  
...  
Keyword(s):  
X Ray ◽  

2008 ◽  
Vol 675 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Massimiliano Bonamente ◽  
Marshall Joy ◽  
Samuel J. LaRoque ◽  
John E. Carlstrom ◽  
Daisuke Nagai ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A173 ◽  
Author(s):  
E. Cucchetti ◽  
E. Pointecouteau ◽  
P. Peille ◽  
N. Clerc ◽  
E. Rasia ◽  
...  

Answers to the metal production of the Universe can be found in galaxy clusters, notably within their intra-cluster medium (ICM). The X-ray Integral Field Unit (X-IFU) on board the next-generation European X-ray observatory Athena (2030s) will provide the necessary leap forward in spatially-resolved spectroscopy required to disentangle the intricate mechanisms responsible for this chemical enrichment. In this paper, we investigate the future capabilities of the X-IFU in probing the hot gas within galaxy clusters. From a test sample of four clusters extracted from cosmological hydrodynamical simulations, we present comprehensive synthetic observations of these clusters at different redshifts (up to z ≤ 2) and within the scaled radius R500 performed using the instrument simulator SIXTE. Through 100 ks exposures, we demonstrate that the X-IFU will provide spatially resolved mapping of the ICM physical properties with little to no biases (⪅5%) and well within statistical uncertainties. The detailed study of abundance profiles and abundance ratios within R500 also highlights the power of the X-IFU in providing constraints on the various enrichment models. From synthetic observations out to z = 2, we have also quantified its ability to track the chemical elements across cosmic time with excellent accuracy, and thereby to investigate the evolution of metal production mechanisms as well as the link to the stellar initial mass-function. Our study demonstrates the unprecedented capabilities of the X-IFU of unveiling the properties of the ICM but also stresses the data analysis challenges faced by future high-resolution X-ray missions such as Athena.


Author(s):  
D. Falceta-Gonçalves ◽  
A. Caproni ◽  
Z. Abraham ◽  
E. M. de Gouveia Dal Pino ◽  
D. M. Teixeira

AbstractSeveral galaxy clusters are known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths. It suggests that the AGN precessing jets play a role in the formation of the misaligned bubbles. Also, X-ray spectra reveal that typically these systems are also able to supress cooling flows, predicted theoretically. The absence of cooling flows in galaxy clusters has been a mistery for many years since numerical simulations and analytical studies suggest that AGN jets are highly energetic, but are unable to redistribute it at all directions. We performed 3D hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, in which dynamics is coupled to a NFW dark matter gravitational potential. Radiative cooling has been taken into account and the cooling flow problem was studied. We found that precession is responsible for multiple pairs of bubbles, as observed. The misaligned bubbles rise up to scales of tens of kiloparsecs, where the thermal energy released by the jets are redistributed. After ~150 Myrs, the temperature of the gas within the cavities is kept of order of ~107 K, while the denser plasma of the intracluster medium at the central regions reaches T ~ 105 K. The existence of multiple bubbles, at diferent directions, results in an integrated temperature along the line of sight much larger than the simulations of non-precessing jets. This result is in agreement with the observations. The simulations reveal that the cooling flows cessed ~50–70 Myr after the AGN jets are started.


2000 ◽  
Vol 315 (4) ◽  
pp. 669-678 ◽  
Author(s):  
B. W. Fairley ◽  
L. R. Jones ◽  
C. Scharf ◽  
H. Ebeling ◽  
E. Perlman ◽  
...  

Author(s):  
Anthony M Flores ◽  
Adam B Mantz ◽  
Steven W Allen ◽  
R Glenn Morris ◽  
Rebecca E A Canning ◽  
...  

Abstract We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts 1.05 &lt; z &lt; 1.71, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev-Zel’dovich (SZ) effect surveys, and observed with both the XMM-Newton and Chandra satellites. For each cluster, a precise gas mass profile was extracted, from which the value of r500 could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, r &lt; 0.3r500 and 0.3 &lt; r/r500 &lt; 1.0. For the outer bin, the combined measurement for all ten clusters, Z/Z⊙ = 0.21 ± 0.09, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 Solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power law model of the form Z∝(1 + z)γ, we measure a slope $\gamma = -0.5^{+0.4}_{-0.3}$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2.


Sign in / Sign up

Export Citation Format

Share Document