scholarly journals Organic chemistry in the innermost, infalling envelope of the Class 0 protostar L483

2019 ◽  
Vol 629 ◽  
pp. A29 ◽  
Author(s):  
Steffen K. Jacobsen ◽  
Jes K. Jørgensen ◽  
James Di Francesco ◽  
Neal J. Evans ◽  
Minho Choi ◽  
...  

Context. Observations of the innermost regions of deeply embedded protostellar cores have revealed complicated physical structures as well as a rich chemistry with the existence of complex organic molecules. The protostellar envelopes, outflow, and large-scale chemistry of Class 0 and Class I objects have been well studied, but while previous works have hinted at or found a few Keplerian disks at the Class 0 stage, it remains to be seen if their presence in this early stage is the norm. Likewise, while complex organics have been detected toward some Class 0 objects, their distribution is unknown as they could reside in the hottest parts of the envelope, in the emerging disk itself, or in other components of the protostellar system, such as shocked regions related to outflows. Aims. In this work, we aim to address two related issues regarding protostars: when rotationally supported disks form around deeply embedded protostars and where complex organic molecules reside in such objects. We wish to observe and constrain the velocity profile of the gas kinematics near the central protostar and determine whether Keplerian motion or an infalling-rotating collapse under angular momentum conservation best explains the observations. The distribution of the complex organic molecules is used to investigate whether they are associated with the hot inner envelope or a possible Keplerian disk. Methods. We observed the deeply embedded protostar, L483, using Atacama Large Millimeter/submillimeter Array (ALMA) Band 7 data from Cycles 1 and 3 with a high angular resolution down to ~0.1′′ (20 au) scales. We present new HCN J = 4–3, HCO+ J = 4–3, CS J = 7–6, and H13CN J = 4–3 observations, along with a range of transitions that can be attributed to complex organics, including lines of CH3OH, CH3OCHO, C2H5OH, NH2CHO, and other species. Results. We find that the kinematics of CS J = 7–6 and H13CN J = 4–3 are best fitted by the velocity profile from infall under conservation of angular momentum and not by a Keplerian profile. The only discernible velocity profile from the complex organics, belonging to CH3OCHO, is consistent with the infall velocity profile derived from CS J = 7–6 and H13CN J = 4–3. The spatial extents of the observed complex organics are consistent with an estimated ice sublimation radius of the envelope at ~50 au, suggesting that the complex organics exist in the hot corino of L483, where the molecules sublimate off the dust grain ice mantles and are injected into the gas phase. Conclusions. We find that L483 does not harbor a Keplerian disk down to at least 15 au in radius. Instead, the innermost regions of L483 are undergoing a rotating collapse and the complex organics exist in a hot corino with a radius of ~40–60 au. This result highlights that some Class 0 objects contain only very small disks, or none at all, and the complex organic chemistry take place on scales inside the hot corino of the envelope in a region larger than the emerging disk.

2007 ◽  
Vol 313 (1-3) ◽  
pp. 153-157 ◽  
Author(s):  
Nami Sakai ◽  
Takeshi Sakai ◽  
Satoshi Yamamoto

1971 ◽  
Vol 54 (6) ◽  
pp. 1340-1348 ◽  
Author(s):  
Peter C Rankin

Abstract A study of the negative ion mass spectra of a number of complex organic molecules (pesticides) was undertaken to determine what information this technique would yield for structural analysis. The simplicity of the negative ion mass spectra was a characteristic feature and the most abundant negative ions in the spectra were assumed to be similar to the stable carbanions postulated in classical organic chemistry. The simplicity of the mass spectra suggested a possible application of the technique to the identification of carbamate pesticides.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wentao Xu ◽  
Wenliang Wang ◽  
Tao Liu ◽  
Jin Xie ◽  
Chengjian Zhu

Abstract The benzylic positions in drugs are sites that readily react with cytochrome P450 oxidases via single-electron oxidation. New synthetic methodologies to incorporate a fluoroalkyl group at the benzylic site are continually being developed, and in this paper, we report a metal-free and site-selective organophotoredox-catalyzed trifluoromethylthiolation of benzylic C-H bonds for a wide variety of alkyl arenes and heteroarenes. The precise and predictive regioselectivity among various C(sp3)-H bonds originates from an inner-sphere benzylic radical initiation mechanism, and avoids the use of external oxidants or hydrogen atom abstractors. Its practicality stems from the trifluoromethylthiolation of a series of drugs and complex organic molecules, which is overwhelmingly selective for benzyl groups. This operationally simple protocol can provide a general and practical access to structurally diverse benzylic trifluoromethyl sulfides produced from ubiquitous benzylic C-H bonds. Large scale trifluoromethylthiolation can be achieved with continuous flow photoredox technology.


2020 ◽  
Vol 635 ◽  
pp. A198 ◽  
Author(s):  
A. Belloche ◽  
A. J. Maury ◽  
S. Maret ◽  
S. Anderl ◽  
A. Bacmann ◽  
...  

Context. Complex organic molecules (COMs) have been detected in a few Class 0 protostars but their origin is not well understood. While the usual picture of a hot corino explains their presence as resulting from the heating of the inner envelope by the nascent protostar, shocks in the outflow, disk wind, the presence of a flared disk, or the interaction region between envelope and disk at the centrifugal barrier have also been claimed to enhance the abundance of COMs. Aims. Going beyond studies of individual objects, we want to investigate the origin of COMs in young protostars on a statistical basis. Methods. We use the CALYPSO survey performed with the Plateau de Bure Interferometer of the Institut de Radioastronomie Millimétrique to search for COMs at high angular resolution in a sample of 26 solar-type protostars, including 22 Class 0 and four Class I objects. We derive the column densities of the detected molecules under the local thermodynamic equilibrium approximation and search for correlations between their abundances and with various source properties. Results. Methanol is detected in 12 sources and tentatively in one source, which represents half of the sample. Eight sources (30%) have detections of at least three COMs. We find a strong chemical differentiation in multiple systems with five systems having one component with at least three COMs detected but the other component devoid of COM emission. All sources with a luminosity higher than 4 L⊙ have at least one detected COM whereas no COM emission is detected in sources with internal luminosity lower than 2 L⊙, likely because of a lack of sensitivity. Internal luminosity is found to be the source parameter impacting the COM chemical composition of the sources the most, while there is no obvious correlation between the detection of COM emission and that of a disk-like structure. A canonical hot-corino origin may explain the COM emission in four sources, an accretion-shock origin in two or possibly three sources, and an outflow origin in three sources. The CALYPSO sources with COM detections can be classified into three groups on the basis of the abundances of oxygen-bearing molecules, cyanides, and CHO-bearing molecules. These chemical groups correlate neither with the COM origin scenarios, nor with the evolutionary status of the sources if we take the ratio of envelope mass to internal luminosity as an evolutionary tracer. We find strong correlations between molecules that are a priori not related chemically (for instance methanol and methyl cyanide), implying that the existence of a correlation does not imply a chemical link. Conclusions. The CALYPSO survey has revealed a chemical differentiation in multiple systems that is markedly different from the case of the prototypical binary IRAS 16293-2422. This raises the question of whether all low-mass protostars go through a phase showing COM emission. A larger sample of young protostars and a more accurate determination of their internal luminosity will be necessary to make further progress. Searching for correlations between the COM emission and the jet/outflow properties of the sources may also be promising.


1985 ◽  
Vol 112 ◽  
pp. 107-121
Author(s):  
C. Sagan ◽  
W. R. Thompson ◽  
B. N. Khare

Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of simulated Titanian atmosphere are consistent with measured properties of Titan from ultraviolet to microwave frequencies, and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on Earth. At least 100 m and possibly kms thickness of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.


2008 ◽  
Vol 4 (S251) ◽  
pp. 117-118 ◽  
Author(s):  
Sandrine Bottinelli ◽  
Cecilia Ceccarelli ◽  
Roberto Neri ◽  
Jonathan P. Williams

AbstractThe formation and evolution of complex organic molecules in the early stages of solar-type protostars (Class 0 objects) is crucial as it sets the stage for the content in pre-biotic molecules of the subsequent proto-planetary nebula. In order to understand the chemistry of these Class 0 objects, it is necessary to perform interferometric observations which allow us to resolve the hot corino, that is the warm, dense inner region of the envelope of a Class 0 object, where the complex organic molecules are located. Such observations exist for only two objects so far, IRAS16293-2422 and NGC1333-IRAS2A and we present here Plateau de Bure interferometric maps of a third hot corino, NGC1333-IRAS4A, which show emission of the complex organic molecule CH3CN arising from a region of size ~0.8″/175 AU, that is, of the order of the size of the Solar System. Combining these high-angular resolution maps with prior single-dish observations of the same transitions of CH3CN indicates that extended emission is also present, and we investigate the implications for organic chemistry in hot corinos.


2020 ◽  
Author(s):  
Sukdev Bag ◽  
Sadhan Jana ◽  
Sukumar Pradhan ◽  
Suman Bhowmick ◽  
Nupur Goswami ◽  
...  

<p>Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing group (DG) served as an ancillary ligand to ensure proximal <i>ortho</i>-, distal <i>meta</i>- and <i>para</i>-C-H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. We introduce here a transient directing group for distal C(<i>sp<sup>2</sup></i>)-H functionalization <i>via</i> reversible imine formation. By overruling facile proximal C-H bond activation by imine-<i>N</i> atom, a suitably designed pyrimidine-based transient directing group (TDG) successfully delivered selective distal C-C bond formation. Application of this transient directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the distal position has been explored.</p>


2009 ◽  
Vol 160 (5) ◽  
pp. 114-123 ◽  
Author(s):  
Daniel Otto ◽  
Sven Wagner ◽  
Peter Brang

The competitive pressure of naturally regenerated European beech (Fagus sylvatica) saplings on planted pedunculate oak (Quercus robur) was investigated on two 1.8 ha permanent plots near Habsburg and Murten (Switzerland). The plots were established with the aim to test methods of artificial oak regeneration after large-scale windthrow. On both plots, 80 oaks exposed to varying levels of competitive pressure from at most 10 neighbouring beech trees were selected. The height of each oak as well as stem and branch diameters were measured. The competitive pressure was assessed using Schütz's competition index, which is based on relative tree height, crown overlap and distance from competing neighbours. Oak trees growing without or with only slight competition from beech were equally tall, while oaks exposed to moderate to strong competition were smaller. A threshold value for the competition index was found above which oak height decreased strongly. The stem and branch diameters of the oaks started to decrease even if the competition from beech was slight, and decreased much further with more competition. The oak stems started to become more slender even with only slight competition from beech. On the moderately acid beech sites studied here, beech grow taller faster than oak. Thus where beech is competing with oak and the aim is to maintain the oak, competitive pressure on the oak must be reduced at an early stage. The degree of the intervention should, however, take the individual competitive interaction into account, with more intervention if the competition is strong.


Sign in / Sign up

Export Citation Format

Share Document