scholarly journals The LOFAR Two-metre Sky Survey

2019 ◽  
Vol 622 ◽  
pp. A2 ◽  
Author(s):  
W. L. Williams ◽  
M. J. Hardcastle ◽  
P. N. Best ◽  
J. Sabater ◽  
J. H. Croston ◽  
...  

The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120–168 MHz survey of the northern sky with diverse and ambitious science goals. Many of the scientific objectives of LoTSS rely upon, or are enhanced by, the association or separation of the sometimes incorrectly catalogued radio components into distinct radio sources and the identification and characterisation of the optical counterparts to these sources. We present the source associations and optical and/or IR identifications for sources in the first data release, which are made using a combination of statistical techniques and visual association and identification. We document in detail the colour- and magnitude-dependent likelihood ratio method used for statistical identification as well as the Zooniverse project, called LOFAR Galaxy Zoo, used for visual classification. We describe the process used to select which of these two different methods is most appropriate for each LoTSS source. The final LoTSS-DR1-IDs value-added catalogue presented contains 318 520 radio sources, of which 231 716 (73%) have optical and/or IR identifications in Pan-STARRS and WISE.

2018 ◽  
Vol 476 (1) ◽  
pp. 961-978 ◽  
Author(s):  
C Furlanetto ◽  
S Dye ◽  
N Bourne ◽  
S Maddox ◽  
L Dunne ◽  
...  

Abstract This paper forms part of the second major public data release of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). In this work, we describe the identification of optical and near-infrared counterparts to the submillimetre detected sources in the 177 deg2 North Galactic Plane (NGP) field. We used the likelihood ratio method to identify counterparts in the Sloan Digital Sky Survey and in the United Kingdom InfraRed Telescope Imaging Deep Sky Survey within a search radius of 10 arcsec of the H-ATLAS sources with a 4σ detection at 250 μm. We obtained reliable (R ≥ 0.8) optical counterparts with r < 22.4 for 42 429 H-ATLAS sources (37.8 per cent), with an estimated completeness of 71.7 per cent and a false identification rate of 4.7 per cent. We also identified counterparts in the near-infrared using deeper K-band data which covers a smaller ∼25 deg2. We found reliable near-infrared counterparts to 61.8 per cent of the 250-μm-selected sources within that area. We assessed the performance of the likelihood ratio method to identify optical and near-infrared counterparts taking into account the depth and area of both input catalogues. Using catalogues with the same surface density of objects in the overlapping ∼25 deg2 area, we obtained that the reliable fraction in the near-infrared (54.8 per cent) is significantly higher than in the optical (36.4 per cent). Finally, using deep radio data which covers a small region of the NGP field, we found that 80–90 per cent of our reliable identifications are correct.


2006 ◽  
Vol 2 (14) ◽  
pp. 581-581
Author(s):  
Robert J. Hanisch ◽  
Anatoly A. Suchkov ◽  
Timothy M. Heckman ◽  
Wolfgang H. Voges

We use VO facilities to study AGNs with X-ray emission. We present a sample of 1744 of Type 1 AGNs from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4) spectroscopic catalog with X-ray counterparts in the White-Giommi-Angelini catalogue (WGACAT) of ROSAT-pspc pointed observations. Of 1744 X-ray sources, 1410 (80.9%) are new AGN identifications. Of 4,574 SDSS DR4 AGNs for which we found radio matches in the catalogue of radio sources from the Faint Images of the Radio Sky at Twenty (FIRST) cm survey, 224 turned up in our sample of SDSS X-ray AGN.


2020 ◽  
Vol 643 ◽  
pp. A100
Author(s):  
T. M. Siewert ◽  
C. Hale ◽  
N. Bhardwaj ◽  
M. Biermann ◽  
D. J. Bacon ◽  
...  

Context. The LOFAR Two-metre Sky Survey (LoTSS) will eventually map the complete Northern sky and provide an excellent opportunity to study the distribution and evolution of the large-scale structure of the Universe. Aims. We test the quality of LoTSS observations through a statistical comparison of the LoTSS first data release (DR1) catalogues to expectations from the established cosmological model of a statistically isotropic and homogeneous Universe. Methods. We study the point-source completeness and define several quality cuts, in order to determine the count-in-cell statistics and differential source count statistics, and measure the angular two-point correlation function. We use the photometric redshift estimates, which are available for about half of the LoTSS-DR1 radio sources, to compare the clustering throughout the history of the Universe. Results. For the masked LoTSS-DR1 value-added source catalogue, we find a point-source completeness of 99% above flux densities of 0.8 mJy. The counts-in-cell statistic reveals that the distribution of radio sources cannot be described by a spatial Poisson process. Instead, a good fit is provided by a compound Poisson distribution. The differential source counts are in good agreement with previous findings in deep fields at low radio frequencies and with simulated catalogues from the SKA Design Study and the Tiered Radio Extragalactic Continuum Simulation. Restricting the value added source catalogue to low-noise regions and applying a flux density threshold of 2 mJy provides our most reliable estimate of the angular two-point correlation. Based on the distribution of photometric redshifts and the Planck 2018 best-fit cosmological model, the theoretically predicted angular two-point correlation between 0.1 deg and 6 deg agrees reasonably well with the measured clustering for the sub-sample of radio sources with redshift information. Conclusions. The deviation from a Poissonian distribution might be a consequence of the multi-component nature of a large number of resolved radio sources and/or of uncertainties on the flux density calibration. The angular two-point correlation function is < 10−2 at angular scales > 1 deg and up to the largest scales probed. At a 2 mJy flux density threshold and at a pivot angle of 1 deg, we find a clustering amplitude of A = (5.1 ± 0.6) × 10−3 with a slope parameter of γ = 0.74 ± 0.16. For smaller flux density thresholds, systematic issues are identified, which are most likely related to the flux density calibration of the individual pointings. We conclude that we find agreement with the expectation of large-scale statistical isotropy of the radio sky at the per cent level. The angular two-point correlation agrees well with the expectation of the cosmological standard model.


2019 ◽  
Vol 622 ◽  
pp. A14 ◽  
Author(s):  
S. Mooney ◽  
J. Quinn ◽  
J. R. Callingham ◽  
R. Morganti ◽  
K. Duncan ◽  
...  

Historically, the blazar population has been poorly understood at low frequencies because survey sensitivity and angular resolution limitations have made it difficult to identify megahertz counterparts. We used the LOFAR Two-Metre Sky Survey (LoTSS) first data release value-added catalogue (LDR1) to study blazars in the low-frequency regime with unprecedented sensitivity and resolution. We identified radio counterparts to all 98 known sources from the Third Fermi-LAT Point Source Catalogue (3FGL) or Roma-BZCAT Multi-frequency Catalogue of Blazars (5th edition) that fall within the LDR1 footprint. Only the 3FGL unidentified γ-ray sources (UGS) could not be firmly associated with an LDR1 source; this was due to source confusion. We examined the redshift and radio luminosity distributions of our sample, finding flat-spectrum radio quasars (FSRQs) to be more distant and more luminous than BL Lacertae objects (BL Lacs) on average. Blazars are known to have flat spectra in the gigahertz regime but we found this to extend down to 144 MHz, where the radio spectral index, α, of our sample is −0.17 ± 0.14. For BL Lacs, α = −0.13 ± 0.16 and for FSRQs, α = −0.15 ± 0.17. We also investigated the radio-to-γ-ray connection for the 30 γ-ray-detected sources in our sample. We find Pearson’s correlation coefficient is 0.45 (p = 0.069). This tentative correlation and the flatness of the spectral index suggest that the beamed core emission contributes to the low-frequency flux density. We compare our sample distribution with that of the full LDR1 on colour-colour diagrams, and we use this information to identify possible radio counterparts to two of the four UGS within the LDR1 field. We will refine our results as LoTSS continues.


2005 ◽  
Vol 201 ◽  
pp. 443-444
Author(s):  
I. W. A. Browne ◽  
S. T. Myers

To exploit gravitational lensing for cosmology large, reliable and statistically complete surveys are required. With the Cosmic Lens All-Sky Survey (CLASS) we have set out to achieve these goals. We pre-select targets to be flat spectrum radio sources and map every source with the VLA at 200mas resolution. Candidates having multiple compact components with flux density ratios ≤10:1 and separation in the range 0.3 to 15 arcsec are followed up with high resolution MERLIN and VLBA observations, eliminating those candidates which do not match strictly defined surface brightness and morphological criteria. A complete sample of 11685 sources have been surveyed and nineteen lens systems have been found.


Author(s):  
Iris de Ruiter ◽  
Guillaume Leseigneur ◽  
Antonia Rowlinson ◽  
Ralph A M J Wijers ◽  
Alexander Drabent ◽  
...  

Abstract We present a search for transient radio sources on timescales of 2-9 years at 150 MHz. This search is conducted by comparing the first Alternative Data Release of the TIFR GMRT Sky Survey (TGSS ADR1) and the second data release of the LOFAR Two-metre Sky Survey (LoTSS DR2). The overlapping survey area covers 5570 $\rm {deg}^2$ on the sky, or 14 per cent of the total sky. We introduce a method to compare the source catalogues that involves a pair match of sources, a flux density cutoff to meet the survey completeness limit and a newly developed compactness criterion. This method is used to identify both transient candidates in the TGSS source catalogue that have no counterpart in the LoTSS catalogue and transient candidates in LoTSS without a counterpart in TGSS. We find that imaging artefacts and uncertainties and variations in the flux density scales complicate the transient search. Our method to search for transients by comparing two different surveys, while taking into account imaging artefacts around bright sources and misaligned flux scales between surveys, is universally applicable to future radio transient searches. No transient sources were identified, but we are able to place an upper limit on the transient surface density of &lt;5.4 · 10−4 deg−2 at 150 MHz for compact sources with an integrated flux density over 100 mJy. Here we define a transient as a compact source with flux density greater than 100 mJy that appears in the catalogue of one survey without a counterpart in the other survey.


1993 ◽  
Vol 32 (02) ◽  
pp. 175-179 ◽  
Author(s):  
B. Brambati ◽  
T. Chard ◽  
J. G. Grudzinskas ◽  
M. C. M. Macintosh

Abstract:The analysis of the clinical efficiency of a biochemical parameter in the prediction of chromosome anomalies is described, using a database of 475 cases including 30 abnormalities. A comparison was made of two different approaches to the statistical analysis: the use of Gaussian frequency distributions and likelihood ratios, and logistic regression. Both methods computed that for a 5% false-positive rate approximately 60% of anomalies are detected on the basis of maternal age and serum PAPP-A. The logistic regression analysis is appropriate where the outcome variable (chromosome anomaly) is binary and the detection rates refer to the original data only. The likelihood ratio method is used to predict the outcome in the general population. The latter method depends on the data or some transformation of the data fitting a known frequency distribution (Gaussian in this case). The precision of the predicted detection rates is limited by the small sample of abnormals (30 cases). Varying the means and standard deviations (to the limits of their 95% confidence intervals) of the fitted log Gaussian distributions resulted in a detection rate varying between 42% and 79% for a 5% false-positive rate. Thus, although the likelihood ratio method is potentially the better method in determining the usefulness of a test in the general population, larger numbers of abnormal cases are required to stabilise the means and standard deviations of the fitted log Gaussian distributions.


1969 ◽  
Vol 1 (5) ◽  
pp. 192-194 ◽  
Author(s):  
D. G. Cole ◽  
R. F. Mullaly

The heights of solar radio sources at 1424 MHz and 696 MHz have been measured during the years 1965 and 1966. Solar activity at this time was near minimum. The number of radio sources appearing on the solar disk rarely exceeded three at any time and it thus was possible to resolve the majority of these with a high resolution grating interferometer. Many of the previous height measurements at these frequencies have been made near times of maximum solar activity and the confusion of sources within the beam has limited their accuracy. The number of sources studied here is quite considerably higher than in any previous investigation at these frequencies, and the period of observation has been continuous.


Sign in / Sign up

Export Citation Format

Share Document