scholarly journals High-resolution observations of gas and dust around Mira using ALMA and SPHERE/ZIMPOL

2018 ◽  
Vol 620 ◽  
pp. A75 ◽  
Author(s):  
T. Khouri ◽  
W. H. T. Vlemmings ◽  
H. Olofsson ◽  
C. Ginski ◽  
E. De Beck ◽  
...  

Context. The outflows of oxygen-rich asymptotic giant branch (AGB) stars are thought to be driven by radiation pressure due to the scattering of photons on relatively large grains, with sizes of tenths of microns. The details of the formation of dust in the extended atmospheres of these stars and, therefore, the mass-loss process, is still not well understood. Aims. We aim to constrain the distribution of the gas and the composition and properties of the dust grains that form in the inner circumstellar environment of the archetypal Mira variable o Cet. Methods. We obtained quasi-simultaneous observations using ALMA and SPHERE/ZIMPOL on the Very Large Telescope (VLT) to probe the distribution of gas and large dust grains, respectively. Results. The polarized light images show dust grains around Mira A, but also around the companion, Mira B, and a dust trail that connects the two sources. The ALMA observations show that dust around Mira A is contained in a high-gas-density region with a significant fraction of the grains that produce the polarized light located at the edge of this region. Hydrodynamical and wind-driving models show that dust grains form efficiently behind shock fronts caused by stellar pulsation or convective motions. The distance at which we observe the density decline (a few tens of au) is, however, significantly larger than expected for stellar-pulsation-induced shocks. Other possibilities for creating the high-gas-density region are a recent change in the mass-loss rate of Mira A or interactions with Mira B. We are not able to determine which of these scenarios is correct. We constrained the gas density, temperature, and velocity within a few stellar radii from the star by modelling the CO v = 1, J = 3−2 line. We find a mass (~3.8 ± 1.3) × 10−4 M⊙ to be contained between the stellar millimetre photosphere, R⋆338 GHz, and 4 R⋆338 GHz. Our best-fit models with lower masses also reproduce the 13CO v = 0, J = 3−2 line emission from this region well. We find TiO2 and AlO abundances corresponding to 4.5% and <0.1% of the total titanium and aluminium expected for a gas with solar composition. The low abundance of AlO allows for a scenario in which Al depletion into dust happens already very close to the star, as expected from thermal dust emission observations and theoretical calculations of Mira variables. The relatively large abundance of aluminium for a gas with solar composition allows us to constrain the presence of aluminium oxide grains based on the scattered light observations and on the gas densities we obtain. These models imply that aluminium oxide grains could account for a significant fraction of the total aluminium atoms in this region only if the grains have sizes ≲0.02 μm. This is an order of magnitude smaller than the maximum sizes predicted by dust-formation and wind-driving models. Conclusions. The study we present highlights the importance of coordinated observations using different instruments to advance our understanding of dust nucleation, dust growth, and wind driving in AGB stars.

1995 ◽  
Vol 155 ◽  
pp. 23-30
Author(s):  
C. Waelkens

AbstractWe review observational evidence on the interaction between stellar pulsation and evolution. We discuss to what extent observations of pulsating stars with variable amplitudes and pulsation periods have implications on our understanding of stellar structure and evolution. The probable link between mass loss and pulsation in AGB stars and in hot luminous stars appears to be the strongest way in which pulsations affect evolution. We point out the possibility that forced oscillations in the components of binaries may have important consequences on evolution, that could offer an explanation for some classes of peculiar evolved objects.


2018 ◽  
Vol 614 ◽  
pp. A17 ◽  
Author(s):  
M. Brunner ◽  
M. Maercker ◽  
M. Mecina ◽  
T. Khouri ◽  
F. Kerschbaum

Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims. We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods. We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results. The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10−10 M⊙ yr−1 and a detached shell dust mass of (2.9 ± 0.3) × 10−5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin.


2020 ◽  
Vol 635 ◽  
pp. A200 ◽  
Author(s):  
T. Khouri ◽  
W. H. T. Vlemmings ◽  
C. Paladini ◽  
C. Ginski ◽  
E. Lagadec ◽  
...  

Context. The asymptotic giant branch (AGB) marks the final evolutionary stage of stars with initial masses between ~0.8 and 8 M⊙. During this phase, stars undergo copious mass loss, which contributes significantly to the enrichment of the interstellar medium. The well-accepted mass-loss mechanism requires radiation pressure acting on dust grains that form in the density-enhanced and extended AGB stellar atmospheres. The details of the mass-loss process are not yet well understood, however. For oxygen-rich AGB stars, which are the focus of this study, the dust grains that drive the wind are expected to scatter visible light very efficiently because their sizes are relative large. Aims. We study the distribution of dust in the inner wind of oxygen-rich AGB stars to advance our understanding of the wind-driving process. Methods. We observed light scattered off dust grains that form around three oxygen-rich AGB stars (W Hya, SW Vir, and R Crt) with mass-loss rates between 10−7 and 10−6 M⊙ yr−1 using the extreme-adaptive-optics imager and polarimeter SPHERE/ZIMPOL with three filters centred at 0.65, 0.75 and 0.82 μm. We compared the observed morphologies and the spectral dependence of the scattered light between the three sources and determined the radial profile, per image octant, of the dust density distribution around the closest target, W Hya. Results. We find the distribution of dust to be asymmetric for the three targets. A biconical morphology is seen for R Crt, with a position angle that is very similar to those inferred from interferometric observations of maser emission and of mid-infrared continuum emission. The cause of the biconical outflow cannot be inferred from the ZIMPOL data, but we speculate that it might be the consequence of a circumstellar disc or of the action of strong magnetic fields. The dust grains polarise light more efficiently at 0.65 μm for R Crt and SW Vir and at 0.82 μm for W Hya. This indicates that at the time of the observations, the grains around SW Vir and R Crt had sizes <0.1 μm, while those around W Hya were larger, with sizes ≳0.1 μm. The asymmetric distribution of dust around R Crt makes the interpretation more uncertain for this star, however. We find that polarised light is produced already from within the visible photosphere of W Hya, which we reproduce using models with an inner dust shell that is optically thick to scattering. We fit radiative transfer models to the radial profile of the polarised light observed around W Hya and find a steep dust density profile, with steepness varying considerably with direction. We find the wind-acceleration region of W Hya to extend to at least ~7 R⋆. This is in agreement with theoretical predictions of wind acceleration up to ~12 R⋆, and highlights that ZIMPOL observations probe the crucial region around AGB stars where dust forms and is accelerated.


2019 ◽  
Vol 628 ◽  
pp. A62 ◽  
Author(s):  
S. Massalkhi ◽  
M. Agúndez ◽  
J. Cernicharo

Aims. We aim to determine the abundances of CS, SiO, and SiS in a large sample of carbon star envelopes covering a wide range of mass loss rates to investigate the potential role that these molecules could play in the formation of dust in the surroundings of the central AGB star. Methods. We surveyed a sample of 25 carbon-rich AGB stars in the λ 2 mm band, more concretely in the J = 3−2 line of CS and SiO, and in the J = 7−6 and J = 8−7 lines of SiS, using the IRAM 30 m telescope. We performed excitation and radiative transfer calculations based on the large velocity gradient (LVG) method to model the observed lines of the molecules and to derive their fractional abundances in the observed envelopes. We also assessed the effect of infrared pumping in the excitation of the molecules. Results. We detected CS in all 25 targeted envelopes, SiO in 24 of them, and SiS in 17 sources. Remarkably, SiS is not detected in any envelope with a mass loss rate below 10−6 M⊙ yr−1 while it is detected in all envelopes with mass loss rates above that threshold. We found that CS and SiS have similar abundances in carbon star envelopes, while SiO is present with a lower abundance. We also found a strong correlation in which the denser the envelope, the less abundant are CS and SiO. The trend is however only tentatively seen for SiS in the range of high mass loss rates. Furthermore, we found a relation in which the integrated flux of the MgS dust feature at 30 μm increases as the fractional abundance of CS decreases. Conclusions. The decline in the fractional abundance of CS with increasing density could be due to gas-phase chemistry in the inner envelope or to adsorption onto dust grains. The latter possibility is favored by a correlation between the CS fractional abundance and the 30 μm feature, which suggests that CS is efficiently incorporated onto MgS dust around C-rich AGB stars. In the case of SiO, the observed abundance depletion with increasing density is most likely caused by an efficient incorporation onto dust grains. We conclude that CS, SiO (very likely), and SiS (tentatively) are good candidates to act as gas-phase precursors of dust in C-rich AGB envelopes.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Sergio Cristallo ◽  
Luciano Piersanti ◽  
David Gobrecht ◽  
Lucio Crivellari ◽  
Ambra Nanni

The interplay between AGB interiors and their outermost layers, where molecules and dust form, is a problem of high complexity. As a consequence, physical processes like mass loss, which depend on the chemistry of the circumstellar envelope, are often oversimplified. The best candidates to drive mass-loss in AGB stars are dust grains, which trap the outgoing radiation and drag the surrounding gas. Grains build up, however, is far from being completely understood. Our aim is to model both the physics and the chemistry of the cool expanding layers around AGB stars in order to characterize the on-going chemistry, from atoms to dust grains. This has been our rationale to develop ab initio VULCAN, a FORTRAN hydro code able to follow the propagation of shocks in the circumstellar envelopes of AGB stars. The version presented in this paper adopts a perfect gas law and a very simplified treatment of the radiative transfer effects and dust nucleation. In this paper, we present preliminary results obtained with our code.


1999 ◽  
Vol 191 ◽  
pp. 239-244 ◽  
Author(s):  
Takashi Kozasa ◽  
Hisato Sogawa

Crystallization of silicate has been investigated within the framework of dust formation in steady state gas outflows around oxygen–rich AGB stars, where silicates are locked not only into homogeneous silicate grains but also into the mantles of heterogeneous grains. Based on the thermal history of dust grains after their formation, the crystallization calculation results in no crystalline silicate for the mass loss rate Ṁ ≤ 2 × 10−5M⊙ yr−1. Only silicate in the mantles of heterogeneous grains can be crystallized for Ṁ ≥ 3 × 10−5M⊙ yr−1, while homogeneous silicate grains remain amorphous. The mass fraction of crystalline silicate increases with increasing Ṁ. The radiation transfer calculations confirm the appearance of an emission feature around 33.5 μm, taking olivine as a representative of crystalline silicates. On the other hand, the 10μm feature appears in absorption, being dominated by homogeneous silicate grains. These trends are consistent with the observations. Thus the crystalline silicate is a diagnostics of high mass loss rate at the late stage of AGB stellar evolution, reflecting the formation process of dust grains.


2018 ◽  
Vol 620 ◽  
pp. A106 ◽  
Author(s):  
M. Maercker ◽  
T. Khouri ◽  
E. De Beck ◽  
M. Brunner ◽  
M. Mecina ◽  
...  

Context. Asymptotic giant branch (AGB) stars experience strong mass loss driven by dust particles formed in the upper atmospheres. The dust is released into the interstellar medium, and replenishes galaxies with synthesised material from the star. The dust grains further act as seeds for continued dust growth in the diffuse medium of galaxies. As such, understanding the properties of dust produced during the asymptotic giant branch phase of stellar evolution is important for understanding the evolution of stars and galaxies. Recent observations of the carbon AGB star R Scl have shown that observations at far-infrared and submillimetre wavelengths can effectively constrain the grain sizes in the shell, while the total mass depends on the structure of the grains (solid vs. hollow or fluffy). Aims. We aim to constrain the properties of the dust observed in the submillimetre in the detached shells around the three carbon AGB stars U Ant, DR Ser, and V644 Sco, and to investigate the constraints on the dust masses and grain sizes provided by far-infrared and submm observations. Methods. We observed the carbon AGB stars U Ant, DR Ser, and V644 Sco at 870 μm using LABOCA on APEX. Combined with observations from the optical to far-infrared, we produced dust radiative transfer models of the spectral energy distributions (SEDs) with contributions from the stars, present-day mass-loss and detached shells. We assume spherical, solid dust grains, and test the effect of different total dust masses and grain sizes on the SED, and attempted to consistently reproduce the SEDs from the optical to the submm. Results. We derive dust masses in the shells of a few 10−5 M ⊙. The best-fit grain radii are comparatively large, and indicate the presence of grains between 0.1 μm and 2 μm. The LABOCA observations suffer from contamination from 12CO (3 − 2), and hence gives fluxes that are higher than the predicted dust emission at submm wavelengths. We investigate the effect on the best-fitting models by assuming different degrees of contamination and show that far-infrared and submillimetre observations are important to constrain the dust mass and grain sizes in the shells. Conclusions. Spatially resolved observations of the detached shells in the far-infrared and submillimetre effectively constrain the temperatures in the shells, and hence the grain sizes. The dust mass is also constrained by the observations, but additional observations are needed to constrain the structure of the grains.


2019 ◽  
Vol 624 ◽  
pp. A107 ◽  
Author(s):  
J. L. Verbena ◽  
V. Bujarrabal ◽  
J. Alcolea ◽  
M. Gómez-Garrido ◽  
A. Castro-Carrizo

Context. Asymptotic giant branch (AGB) stars go through a process of strong mass loss that involves pulsations of the atmosphere, which extends to a region in which the conditions are adequate for dust grains to form. Radiation pressure acts on these grains which, coupled to the gas, drive a massive outflow. The details of this process are not clear, including which molecules are involved in the condensation of dust grains. Aims. We seek to study the role of the SiO molecule in the process of dust formation and mass loss in M-type AGB stars. Methods. Using the IRAM NOEMA interferometer we observed the 28SiO and 29SiO J = 3−2, v = 0 emission from the inner circumstellar envelope of the evolved stars IK Tau and IRC+10011. We computed azimuthally averaged emission profiles to compare the observations to models using a molecular excitation and ray-tracing code for SiO thermal emission. Results. We observe circular symmetry in the emission distribution. We also find that the source diameter varies only marginally with radial velocity, which is not the expected behaviour for envelopes expanding at an almost constant velocity. The adopted density, velocity, and abundance laws, together with the mass-loss rate, which best fit the observations, give us information concerning the chemical behaviour of the SiO molecule and its role in the dust formation process. Conclusions. The results indicate that there is a strong coupling between the depletion of gas-phase SiO and gas acceleration in the inner envelope. This could be explained by the condensation of SiO into dust grains.


1998 ◽  
Vol 11 (1) ◽  
pp. 395-395
Author(s):  
S. Nishida ◽  
T. Tanabé ◽  
S. Matsumoto ◽  
T. Onaka ◽  
Y. Nakada ◽  
...  

A systematic near-infrared survey was made for globular clusters in the Magellanic Clouds. Two infrared stars were discovered in NGC419 (SMC) and NGC1783 (LMC). NGC419 and NGC1783 are well-studied rich globular clusters whose turn-off masses and ages are estimated MTO ~ 2.0 Mʘ and т ~1.2 Gyr for NGC419, and MT0 ~ 2.0 Mʘ and т ʘ 0.9 Gyr for NGC1783, respectively. The periods of the infrared light variations were determined to be 540 dfor NGC419IR1 and to be 480 d for NGC1783IR1, respectively. Comparison of the measurements with the period—if magnitude relation for carbon Miras in the LMC by Groenewegen and Whitelock(1996) revealed that the Kmagnitudes of the infrared stars were fainter by about 0.3 — 0.8 magnitude than those predicted by the P — K relation. This deviation can be explained if the infrared stars are surrounded by thick dust shells and are obscured even in the K band. The positions of NGC419IR1and NGC1783IR1 on the P — K diagram suggest that AGB stars with the main sequence masses of about 2 Mʘ start their heavy mass-loss when P ʘ 500 d.


2019 ◽  
Vol 623 ◽  
pp. A119 ◽  
Author(s):  
S. Bladh ◽  
K. Eriksson ◽  
P. Marigo ◽  
S. Liljegren ◽  
B. Aringer

Context. The heavy mass loss observed in evolved stars on the asymptotic giant branch (AGB) is usually attributed to dust-driven winds, but it is still an open question how much AGB stars contribute to the dust production in the interstellar medium, especially at lower metallicities. In the case of C-type AGB stars, where the wind is thought to be driven by radiation pressure on amorphous carbon grains, there should be significant dust production even in metal-poor environments. Carbon stars can manufacture the building blocks needed to form the wind-driving dust species themselves, irrespective of the chemical composition they have, by dredging up carbon from the stellar interior during thermal pulses. Aims. We investigate how the mass loss in carbon stars is affected by a low-metallicity environment, similar to the Large and Small Magellanic Clouds (LMC and SMC). Methods. The atmospheres and winds of C-type AGB stars are modeled with the 1D spherically symmetric radiation-hydrodynamical code Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN). The models include a time-dependent description for nucleation, growth, and evaporation of amorphous carbon grains directly out of the gas phase. To explore the metallicity-dependence of mass loss we calculate model grids at three different chemical abundances (solar, LMC, and SMC). Since carbon may be dredged up during the thermal pulses as AGB stars evolve, we keep the carbon abundance as a free parameter. The models in these three different grids all have a current mass of one solar mass; effective temperatures of 2600, 2800, 3000, or 3200 K; and stellar luminosities equal to logL*∕L⊙ = 3.70, 3.85, or 4.00. Results. The DARWIN models show that mass loss in carbon stars is facilitated by high luminosities, low effective temperatures, and a high carbon excess (C–O) at both solar and subsolar metallicities. Similar combinations of effective temperature, luminosity, and carbon excess produce outflows at both solar and subsolar metallicities. There are no large systematic differences in the mass-loss rates and wind velocities produced by these wind models with respect to metallicity, nor any systematic difference concerning the distribution of grain sizes or how much carbon is condensed into dust. DARWIN models at subsolar metallicity have approximately 15% lower mass-loss rates compared to DARWIN models at solar metallicity with the same stellar parameters and carbon excess. For both solar and subsolar environments typical grain sizes range between 0.1 and 0.5 μm, the degree of condensed carbon varies between 5 and 40%, and the gas-to-dust ratios between 500 and 10 000. Conclusions. C-type AGB stars can contribute to the dust production at subsolar metallicities (down to at least [Fe∕H] = −1) as long as they dredge up sufficient amounts of carbon from the stellar interior. Furthermore, stellar evolution models can use the mass-loss rates calculated from DARWIN models at solar metallicity when modeling the AGB phase at subsolar metallicities if carbon excess is used as the critical abundance parameter instead of the C/O ratio.


Sign in / Sign up

Export Citation Format

Share Document