scholarly journals ALMA reveals the magnetic field evolution in the high-mass star forming complex G9.62+0.19

2019 ◽  
Vol 626 ◽  
pp. A36 ◽  
Author(s):  
D. Dall’Olio ◽  
W. H. T. Vlemmings ◽  
M. V. Persson ◽  
F. O. Alves ◽  
H. Beuther ◽  
...  

Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are as yet largely unexplored. The high-mass star forming region G9.62+0.19 is a well known source, presenting several cores at different evolutionary stages. Aims. We seek to investigate the magnetic field properties at the initial stages of massive star formation. We aim to determine the magnetic field morphology and strength in the high-mass star forming region G9.62+0.19 to investigate its relation to the evolutionary sequence of the cores. Methods. We made use of Atacama Large Millimeter Array (ALMA) observations in full polarisation mode at 1 mm wavelength (Band 7) and we analysed the polarised dust emission. We estimated the magnetic field strength via the Davis–Chandrasekhar–Fermi and structure function methods. Results. We resolve several protostellar cores embedded in a bright and dusty filamentary structure. The polarised emission is clearly detected in six regions: two in the northern field and four in the southern field. Moreover the magnetic field is orientated along the filament and appears perpendicular to the direction of the outflows. The polarisation vectors present ordered patterns and the cores showing polarised emission are less fragmented. We suggest an evolutionary sequence of the magnetic field, and the less evolved hot core exhibits a stronger magnetic field than the more evolved hot core. An average magnetic field strength of the order of 11 mG was derived, from which we obtain a low turbulent-to-magnetic energy ratio, indicating that turbulence does not significantly contribute to the stability of the clump. We report a detection of linear polarisation from thermal line emission, probably from methanol or carbon dioxide, and we tentatively compared linear polarisation vectors from our observations with previous linearly polarised OH masers observations. We also compute the spectral index, column density, and mass for some of the cores. Conclusions. The high magnetic field strength and smooth polarised emission indicate that the magnetic field could play an important role in the fragmentation and the collapse process in the star forming region G9.62+019 and that the evolution of the cores can be magnetically regulated. One core shows a very peculiar pattern in the polarisation vectors, which can indicate a compressed magnetic field. On average, the magnetic field derived by the linear polarised emission from dust, thermal lines, and masers is pointing in the same direction and has consistent strength.

2003 ◽  
Vol 13 (12) ◽  
pp. 3783-3789 ◽  
Author(s):  
F. E. SMITH ◽  
P. LANGLEY ◽  
L. TRAHMS ◽  
U. STEINHOFF ◽  
J. P. BOURKE ◽  
...  

Multichannel magnetocardiography measures the magnetic field distribution of the human heart noninvasively from many sites over the body surface. Multichannel magnetocardiogram (MCG) analysis enables regional temporal differences in the distribution of cardiac magnetic field strength during depolarization and repolarization to be identified, allowing estimation of the global and local inhomogeneity of the cardiac activation process. The aim of this study was to compare the spatial distribution of cardiac magnetic field strength during ventricular depolarization and repolarization in both normal subjects and patients with cardiac abnormalities, obtaining amplitude measurements by magnetocardiography. MCGs were recorded at 49 sites over the heart from three normal subjects and two patients with inverted T-wave conditions. The magnetic field intensity during depolarization and repolarization was measured automatically for each channel and displayed spatially as contour maps. A Pearson correlation was used to determine the spatial relationship between the variables. For normal subjects, magnetic field strength maps during depolarization (R-wave) showed two asymmetric regions of magnetic field strength with a high positive value in the lower half of the chest and a high negative value above this. The regions of high R-wave amplitude corresponded spatially to concentrated asymmetric regions of high magnetic field strength during repolarization (T-wave). Pearson-r correlation coefficients of 0.7 (p<0.01), 0.8 (p<0.01) and 0.9 (p<0.01) were obtained from this analysis for the three normal subjects. A negative correlation coefficient of -0.7 (p<0.01) was obtained for one of the subjects with inverted T-wave abnormalities, suggesting similar but inverted magnetic field and current distributions to normal subjects. Even with the high correlation values in these four subjects, the MCG was able to identify differences in the distribution of magnetic field strength, with a shift in the T-wave relative to the R-wave. The measurement of cardiac magnetic field distribution during depolarization and repolarization of normal subjects and patients with clinical abnormalities should enable the improvement of theoretical models for the explanation of the cardiac depolarization and repolarization processes.


2019 ◽  
Vol 630 ◽  
pp. A54 ◽  
Author(s):  
M. T. Beltrán ◽  
M. Padovani ◽  
J. M. Girart ◽  
D. Galli ◽  
R. Cesaroni ◽  
...  

Context. Submillimeter Array (SMA) 870 μm polarization observations of the hot molecular core G31.41+0.31 revealed one of the clearest examples up to date of an hourglass-shaped magnetic field morphology in a high-mass star-forming region. Aims. To better establish the role that the magnetic field plays in the collapse of G31.41+0.31, we carried out Atacama Large Millimeter/ submillimeter Array (ALMA) observations of the polarized dust continuum emission at 1.3 mm with an angular resolution four times higher than that of the previous (sub)millimeter observations to achieve an unprecedented image of the magnetic field morphology. Methods. We used ALMA to perform full polarization observations at 233 GHz (Band 6). The resulting synthesized beam is 0′′.28×0′′.20 which, at the distance of the source, corresponds to a spatial resolution of ~875 au. Results. The observations resolve the structure of the magnetic field in G31.41+0.31 and allow us to study the field in detail. The polarized emission in the Main core of G31.41+0.41is successfully fit with a semi-analytical magnetostatic model of a toroid supported by magnetic fields. The best fit model suggests that the magnetic field is well represented by a poloidal field with a possible contribution of a toroidal component of ~10% of the poloidal component, oriented southeast to northwest at approximately −44° and with an inclination of approximately −45°. The magnetic field is oriented perpendicular to the northeast to southwest velocity gradient detected in this core on scales from 103 to 104 au. This supports the hypothesis that the velocity gradient is due to rotation of the core and suggests that such a rotation has little effect on the magnetic field. The strength of the magnetic field estimated in the central region of the core with the Davis–Chandrasekhar-Fermi method is ~8–13 mG and implies that the mass-to-flux ratio in this region is slightly supercritical. Conclusions. The magnetic field in G31.41+0.31 maintains an hourglass-shaped morphology down to scales of <1000 au. Despite the magnetic field being important in G31.41+0.31, it is not enough to prevent fragmentation and collapse of the core, as demonstrated by the presence of at least four sources embedded in the center of the core.


2020 ◽  
Vol 640 ◽  
pp. A111
Author(s):  
C. Arce-Tord ◽  
F. Louvet ◽  
P. C. Cortes ◽  
F. Motte ◽  
C. L. H. Hull ◽  
...  

Aims. It has been proposed that the magnetic field, which is pervasive in the interstellar medium, plays an important role in the process of massive star formation. To better understand the impact of the magnetic field at the pre- and protostellar stages, high-angular resolution observations of polarized dust emission toward a large sample of massive dense cores are needed. We aim to reveal any correlation between the magnetic field orientation and the orientation of the cores and outflows in a sample of protostellar dense cores in the W43-MM1 high-mass star-forming region. Methods. We used the Atacama Large Millimeter Array in Band 6 (1.3 mm) in full polarization mode to map the polarized emission from dust grains at a physical scale of ~2700 au. We used these data to measure the orientation of the magnetic field at the core scale. Then, we examined the relative orientations of the core-scale magnetic field, of the protostellar outflows, and of the major axis of the dense cores determined from a 2D Gaussian fit in the continuum emission. Results. We find that the orientation of the dense cores is not random with respect to the magnetic field. Instead, the dense cores are compatible with being oriented 20–50° with respect to the magnetic field. As for the outflows, they could be oriented 50–70° with respect to the magnetic field, or randomly oriented with respect to the magnetic field, which is similar to current results in low-mass star-forming regions. Conclusions. The observed alignment of the position angle of the cores with respect to the magnetic field lines shows that the magnetic field is well coupled with the dense material; however, the 20–50° preferential orientation contradicts the predictions of the magnetically-controlled core-collapse models. The potential correlation of the outflow directions with respect to the magnetic field suggests that, in some cases, the magnetic field is strong enough to control the angular momentum distribution from the core scale down to the inner part of the circumstellar disks where outflows are triggered.


2021 ◽  
Vol 923 (2) ◽  
pp. 204
Author(s):  
Paulo C. Cortés ◽  
Patricio Sanhueza ◽  
Martin Houde ◽  
Sergio Martín ◽  
Charles L. H. Hull ◽  
...  

Abstract Here, we report ALMA detections of polarized emission from dust, CS(J = 5 → 4), and C33S(J = 5 → 4) toward the high-mass star-forming region NGC 6334I(N). A clear “hourglass” magnetic field morphology was inferred from the polarized dust emission, which is also directly seen from the polarized CS emission across velocity, where the polarization appears to be parallel to the field. By considering previous findings, the field retains a pinched shape that can be traced to clump length scales from the envelope scales traced by ALMA, suggesting that the field is dynamically important across multiple length scales in this region. The CS total intensity emission is found to be optically thick (τ CS = 32 ± 12) while the C33S emission appears to be optically thin ( τ C 33 S = 0.1 ± 0.01 ). This suggests that sources of anisotropy other than large velocity gradients, i.e., anisotropies in the radiation field, are required to explain the polarized emission from CS seen by ALMA. By using four variants of the Davis–Chandrasekhar–Fermi technique and the angle dispersion function methods (ADF), we obtain an average of the estimates for the magnetic field strength on the plane of the sky of B pos = 16 mG from the dust and B pos ∼ 2 mG from the CS emission, where each emission traces different molecular hydrogen number densities. This effectively enables a tomographic view of the magnetic field within a single ALMA observation.


2019 ◽  
Vol 623 ◽  
pp. A130 ◽  
Author(s):  
G. Surcis ◽  
W. H. T. Vlemmings ◽  
H. J. van Langevelde ◽  
B. Hutawarakorn Kramer ◽  
A. Bartkiewicz

Context. Magnetohydrodynamical simulations show that the magnetic field can drive molecular outflows during the formation of massive protostars. The best probe to observationally measure both the morphology and the strength of this magnetic field at scales of 10–100 au is maser polarization. Aims. We measure the direction of magnetic fields at milliarcsecond resolution around a sample of massive star-forming regions to determine whether there is a relation between the orientation of the magnetic field and of the outflows. In addition, by estimating the magnetic field strength via the Zeeman splitting measurements, the role of magnetic field in the dynamics of the massive star-forming region is investigated. Methods. We selected a flux-limited sample of 31 massive star-forming regions to perform a statistical analysis of the magnetic field properties with respect to the molecular outflows characteristics. We report the linearly and circularly polarized emission of 6.7 GHz CH3OH masers towards seven massive star-forming regions of the total sample with the European VLBI Network. The sources are: G23.44−0.18, G25.83−0.18, G25.71−0.04, G28.31−0.39, G28.83−0.25, G29.96−0.02, and G43.80−0.13. Results. We identified a total of 219 CH3OH maser features, 47 and 2 of which showed linearly and circularly polarized emission, respectively. We measured well-ordered linear polarization vectors around all the massive young stellar objects and Zeeman splitting towards G25.71−0.04 and G28.83−0.25. Thanks to recent theoretical results, we were able to provide lower limits to the magnetic field strength from our Zeeman splitting measurements. Conclusions. We further confirm (based on ∼80% of the total flux-limited sample) that the magnetic field on scales of 10–100 au is preferentially oriented along the outflow axes. The estimated magnetic field strength of |B||| > 61 mG and >21 mG towards G25.71−0.04 and G28.83−0.25, respectively, indicates that it dominates the dynamics of the gas in both regions.


2019 ◽  
Vol 624 ◽  
pp. L7 ◽  
Author(s):  
W. H. T. Vlemmings ◽  
B. Lankhaar ◽  
P. Cazzoletti ◽  
C. Ceccobello ◽  
D. Dall’Olio ◽  
...  

Despite their importance in the star formation process, measurements of magnetic field strength in proto-planetary discs remain rare. While linear polarisation of dust and molecular lines can give insight into the magnetic field structure, only observations of the circular polarisation produced by Zeeman splitting provide a direct measurement of magnetic field strenghts. One of the most promising probes of magnetic field strengths is the paramagnetic radical CN. Here we present the first Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Zeeman splitting of CN in the disc of TW Hya. The observations indicate an excellent polarisation performance of ALMA, but fail to detect significant polarisation. An analysis of eight individual CN hyperfine components as well as a stacking analysis of the strongest (non-blended) hyperfine components yields the most stringent limits obtained so far on the magnetic field strength in a proto-planetary disc. We find that the vertical component of the magnetic field |Bz| < 0.8 mG (1σ limit). We also provide a 1σ toroidal field strength limit of <30 mG. These limits rule out some of the earlier accretion disc models, but remain consistent with the most recent detailed models with efficient advection. We detect marginal linear polarisation from the dust continuum, but the almost purely toroidal geometry of the polarisation vectors implies that his is due to radiatively aligned grains.


1998 ◽  
Vol 164 ◽  
pp. 371-372
Author(s):  
J.-F. Desmurs ◽  
A. Baudry

AbstractWe have used 3 antennas of the EVN to observe in 6 star-forming regions simultaneously, and for the first time, the 2 main lines of the J=5/2 state of OH with right and left circularly polarized feeds. Maser features and Zeeman pairs are identified by searching for emission over adjacent channels, and adjacent positions (within one synthesized beam) in both polarizations after we had mapped and used one selected simple channel as a reference. The magnetic field strength is thus estimated from the Zeeman pairs identified in our OH maps. We briefly present results obtained for W3(OH), ON1, and W51.


2012 ◽  
Vol 8 (S287) ◽  
pp. 31-40 ◽  
Author(s):  
W. H. T. Vlemmings

AbstractMaser polarization observations can reveal unique information on the magnetic field strength and structure for a large number of very different astronomical objects. As the different masers for which polarization is measured, such as silicon-monoxide, water, hydroxil and methanol, probe different physical conditions, the masers can even be used to determine for example the relation between magnetic field and density. In particular, maser polarization observations have improved our understanding of the magnetic field strength in, among others, the envelopes around evolved stars, Planetary Nebulae (PNe), massive star forming regions, supernova remnants and megamaser galaxies. This review presents an overview of maser polarization observations and magnetic field determinations of the last several years and discusses some of the theoretical considerations needed for a proper maser polarization analysis.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document