scholarly journals New view of the corona of classical T Tauri stars: Effects of flaring activity in circumstellar disks

2019 ◽  
Vol 624 ◽  
pp. A50 ◽  
Author(s):  
S. Colombo ◽  
S. Orlando ◽  
G. Peres ◽  
F. Reale ◽  
C. Argiroffi ◽  
...  

Context. Classical T Tauri stars (CTTSs) are young low-mass stellar objects that accrete mass from their circumstellar disks. They are characterized by high levels of coronal activity, as revealed by X-ray observations. This activity may affect the disk stability and the circumstellar environment. Aims. Here we investigate if an intense coronal activity due to flares that occur close to the accretion disk may perturb the stability of the inner disk, disrupt the inner part of the disk, and might even trigger accretion phenomena with rates comparable with those observed. Methods. We modeled a magnetized protostar surrounded by an accretion disk through 3D magnetohydrodinamic simulations. The model takes into account the gravity from the central star, the effects of viscosity in the disk, the thermal conduction (including the effects of heat flux saturation), the radiative losses from optically thin plasma, and a parameterized heating function to trigger the flares. We explored cases characterized by a dipole plus an octupole stellar magnetic field configuration and different density of the disk or by different levels of flaring activity. Results. As a result of the simulated intense flaring activity, we observe the formation of several loops that link the star to the disk; all these loops build up a hot extended corona with an X-ray luminosity comparable with typical values observed in CTTSs. The intense flaring activity close to the disk can strongly perturb the disk stability. The flares trigger overpressure waves that travel through the disk and modify its configuration. Accretion funnels may be triggered by the flaring activity and thus contribute to the mass accretion rate of the star. Accretion rates synthesized from the simulations are in a range between 10−10 and 10−9 M⊙ yr−1. The accretion columns can be perturbed by the flares, and they can interact with each other; they might merge into larger streams. As a result, the accretion pattern can be rather complex: the streams are highly inhomogeneous, with a complex density structure, and clumped.

2007 ◽  
Vol 3 (S243) ◽  
pp. 1-12 ◽  
Author(s):  
Claude Bertout

AbstractAccretion and magnetic fields play major roles in several of the many models put forward to explain the properties of T Tauri stars since their discovery by Alfred Joy in the 1940s. Early investigators already recognized in the 1950s that a source of energy external to the star was needed to account for the emission properties of these stars in the optical range.The opening of new spectral windows from the infrared to the ultraviolet in the 1970s and 1980s showed that the excess emission of T Tauri stars and related objects extends into all wavelength domains, while evidence of outflow and/or infall in their circumstellar medium was accumulating.Although the disk hypothesis had been put forward by Merle Walker as early as 1972 to explain properties of YY Orionis stars and although Lynden-Bell and Pringle worked out the accretion disk model and applied it specifically to T Tauri stars in 1974, the prevailing model for young stellar objects until the mid-1980s assumed that they experienced extreme solar-type activity. It then took until the late 1980s before the indirect evidence of disks presented by several teams of researchers became so compelling that a paradigm shift occurred, leading to the current consensual picture.I briefly review the various models proposed for explaining the properties of young stellar objects, from their discovery to the direct observations of circumstellar disks that have so elegantly confirmed the nature of young stars. I will go on to discuss more modern issues concerning their accretion disk properties and conclude with some results obtained in a recent attempt to better understand the evolution of Taurus-Auriga young stellar objects.


1997 ◽  
Vol 161 ◽  
pp. 267-282 ◽  
Author(s):  
Thierry Montmerle

AbstractFor life to develop, planets are a necessary condition. Likewise, for planets to form, stars must be surrounded by circumstellar disks, at least some time during their pre-main sequence evolution. Much progress has been made recently in the study of young solar-like stars. In the optical domain, these stars are known as «T Tauri stars». A significant number show IR excess, and other phenomena indirectly suggesting the presence of circumstellar disks. The current wisdom is that there is an evolutionary sequence from protostars to T Tauri stars. This sequence is characterized by the initial presence of disks, with lifetimes ~ 1-10 Myr after the intial collapse of a dense envelope having given birth to a star. While they are present, about 30% of the disks have masses larger than the minimum solar nebula. Their disappearance may correspond to the growth of dust grains, followed by planetesimal and planet formation, but this is not yet demonstrated.


1997 ◽  
Vol 182 ◽  
pp. 391-405 ◽  
Author(s):  
Lee Hartmann

Outflows from low-mass young stellar objects are thought to draw upon the energy released by accretion onto T Tauri stars. I briefly summarize the evidence for this accretion and outline present estimates of mass accretion rates. Young stars show a very large range of accretion rates, and this has important implications for both mass ejection and for the structure of stellar magnetospheres which may truncate T Tauri disks.


2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


2007 ◽  
Vol 3 (S243) ◽  
pp. 71-82 ◽  
Author(s):  
Silvia H. P. Alencar

AbstractMagnetospheric accretion models are the current consensus to explain the main observed characteristics of classical T Tauri stars. In recent years the concept of a static magnetosphere has been challenged by synoptic studies of classical T Tauri stars that show strong evidence for the accretion process to be dynamic on several timescales and governed by changes in the magnetic field configuration. At the same time numerical simulation results predict evolving funnel flows due to the interaction between the stellar magnetosphere and the inner disk region. In this contribution we will focus on the main recent observational evidences for time variable funnel flows and compare them with model predictions.


1999 ◽  
pp. 119-120
Author(s):  
V. M. Costa ◽  
M. T. V. T. Lago
Keyword(s):  
X Ray ◽  

2018 ◽  
Vol 14 (S345) ◽  
pp. 128-131
Author(s):  
József Varga ◽  
Péter Ábrahám ◽  
Lei Chen ◽  
Thorsten Ratzka ◽  
K. É. Gabányi ◽  
...  

AbstractWe present our results from a mid-infrared interferometric survey targeted at the planet-forming region in the circumstellar disks around low- and intermediate-mass young stars. Our sample consists of 82 objects, including T Tauri stars, Herbig Ae stars, and young eruptive stars. Our main results are: 1) Disks around T Tauri stars are similar to those around Herbig Ae stars, but are relatively more extended once we account for stellar luminosity. 2) From the distribution of the sizes of the mid-infrared emitting region we find that inner dusty disk holes may be present in roughly half of the sample. 3) Our analysis of the silicate spectral feature reveals that the dust in the inner ~1 au region of disks is generally more processed than that in the outer regions. 4) The dust in the disks of T Tauri stars typically show weaker silicate emission in the N band spectrum, compared to Herbig Ae stars, which may indicate a general difference in the disk structure. Our data products are available at VizieR, and at the following web page: http://konkoly.hu/MIDI_atlas.


1988 ◽  
Vol 96 ◽  
pp. 297 ◽  
Author(s):  
Frederick M. Walter ◽  
A. Brown ◽  
R. D. Mathieu ◽  
P. C. Myers ◽  
F. J. Vrba
Keyword(s):  
X Ray ◽  

1995 ◽  
Vol 446 ◽  
pp. 331 ◽  
Author(s):  
F. Damiani ◽  
G. Micela ◽  
S. Sciortino ◽  
F. R., Jr. Harnden
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document