scholarly journals Properties of the transient X-ray pulsar Swift J1816.7–1613 and its optical companion

2019 ◽  
Vol 622 ◽  
pp. A198 ◽  
Author(s):  
Armin Nabizadeh ◽  
Sergey S. Tsygankov ◽  
Dmitrij I. Karasev ◽  
Juhani Mönkkönen ◽  
Alexander A. Lutovinov ◽  
...  

We present results of investigation of the poorly studied X-ray pulsar Swift J1816.7–1613 during its transition from the type I outburst to the quiescent state. Our studies are based on the data obtained from X-ray observatories Swift, NuSTAR, and Chandra alongside with the latest IR data from UKIDSS/GPS and Spitzer/GLIMPSE surveys. The aim of the work is to determine the parameters of the system, namely the strength of the neutron star magnetic field and the distance to the source, which are required for the interpretation of the source behaviour in the framework of physically motivated models. No cyclotron absorption line was detected in the broad-band energy spectrum. However, the timing analysis hints at the typical for the X-ray pulsars magnetic field from a few ×1011 to a few ×1012 G. We also estimated the type of the IR-companion as a B0-2e star located at a distance of 7–13 kpc.

2019 ◽  
Vol 621 ◽  
pp. A134 ◽  
Author(s):  
Sergey S. Tsygankov ◽  
Victor Doroshenko ◽  
Alexander A. Mushtukov ◽  
Alexander A. Lutovinov ◽  
Juri Poutanen

In the work we present the results of two deep broadband observations of the poorly studied X-ray pulsar IGR J19294+1816 obtained with the NuSTAR observatory. The source was observed during Type I outburst and in the quiescent state. In the bright state a cyclotron absorption line in the energy spectrum was discovered at Ecyc = 42.8 ± 0.7 keV. Spectral and timing analysis prove the ongoing accretion also during the quiescent state of the source. Based on the long-term flux evolution, particularly on the transition of the source to the bright quiescent state with luminosity around 1035 erg s−1, we conclude that IGR J19294+1816 switched to the accretion from the “cold” accretion disk between Type I outbursts. We also report the updated orbital period of the system.


2018 ◽  
Vol 610 ◽  
pp. L2 ◽  
Author(s):  
A. Sanna ◽  
A. Bahramian ◽  
E. Bozzo ◽  
C. Heinke ◽  
D. Altamirano ◽  
...  

We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597–3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation that implies an orbital period of ~46 min and a projected semi-major axis of ~5 lt-ms, which makes IGR J16597–3704 an ultracompact X-ray binary system. We estimated a minimum companion mass of 6.5 × 10−10 M⊙, assuming a neutron star mass of 1.4 M⊙, and an inclination angle of <75° (suggested by the absence of eclipses or dips in its light curve). The broad-band energy spectrum of the source is well described by a disk blackbody component (kT ~ 1.4 keV) plus a comptonised power-law with photon index ~2.3 and an electron temperature of ~30 keV. Radio pulsations from the source were unsuccessfully searched for with the Parkes Observatory.


Nature ◽  
2003 ◽  
Vol 423 (6941) ◽  
pp. 725-727 ◽  
Author(s):  
G. F. Bignami ◽  
P. A. Caraveo ◽  
A. De Luca ◽  
S. Mereghetti

2004 ◽  
Vol 218 ◽  
pp. 247-250 ◽  
Author(s):  
GianLuca Israel ◽  
Luigi Stella ◽  
Stefano Covino ◽  
Sergio Campana ◽  
Lorella Angelini ◽  
...  

During 2002–2003 the number of IR-identified counterparts to the Anomalous X-ray Pulsars (AXPs) has grown to four (4U 0142+61, IE 2259+586, IE 1048.1−5937 and RXS J170849−400910) out of the six objects (plus two candidates) known in this class. More importantly, some new common characteristics have been identified, such as IR variability, IR flattening in the broad-band energy spectrum, X-ray spectral variability as a function of pulse phase (which are not predicted by the magnetar model), and X-ray bursts (which cannot be explained in terms of standard accretion models). We present the results obtained from an extensive multi-wavelength observational campaign carried out with the NTT and CFHT for the optical/IR bands, and XMM and Chandra (plus BeppoSAX archival data) in X-rays. Based on these results and those reported in the literature, the IR-to-X-ray emission of AXPs is compared.


2020 ◽  
Author(s):  
Sergio Campana

Abstract The solid crust constituting the outer layers of a hot neutron star is wrapped by an mm-to-cm thin atmosphere. Even if the atmosphere is so thin, it substantially affects the blackbody spectrum emitted by the surface, resulting in an overall hardening of the emitted spectrum. The composition of the atmosphere has so far remained elusive. Several narrow absorption features have been detected and interpreted as arising from proton (or electron) resonant cyclotron absorption in the neutron star magnetic field. Apart from these, for a Hydrogen atmosphere no spectral features are expected, whereas when it is polluted with metals, absorption features start appearing in soft X-ray spectra. Absorption edges and features have been possibly observed during thermonuclear explosions onto the neutron star surface. Isolated neutron stars represent a breeding ground where to look for absorption features, thanks to their simple X-ray spectra. Here we report on the detection of redshifted Nitrogen and Oxygen absorption features from the closest and brightest isolated neutron star. The lines are ~50 eV wide and their intensity is incompatible from originating in the interstellar path to the neutron star. Lines are redshifted by a common gravitational redshift of z_g=0.216±0.004.


1997 ◽  
Vol 163 ◽  
pp. 289-299
Author(s):  
P. C. Joss ◽  
S. Rappaport

AbstractGRO J1744–28 is the first known X-ray source to display both bursts and periodic pulsations. This source may thus provide crucial clues that will lead to an understanding of the differences in the nature of the X-ray variability among accreting neutron stars. We deduce that the magnetic field of the neutron star is relatively weak (~ 8 × 1010G) but, nevertheless, sufficiently strong to funnel the accretion flow onto the magnetic polar caps and suppress the thermonuclear flashes that would otherwise give rise to type I X-ray bursts. We also present a series of interrelated arguments which demonstrate that the observed bursts are of type II and probably result from an instability associated with the interaction of the neutron-star magnetic field with the inner edge of the accretion disk. From these results, we infer that X-ray pulsars, GRO J1744–28, the Rapid Burster, and the type I X-ray bursters may form a sequence of possible behaviors among accreting neutron stars, with the strength of the magnetic field serving as the crucial parameter that determines the mode of X-ray variability. The companion star in the GRO J1744–28 binary system is probably a very low-mass (~ 0.2M⊙) giant that is in the final stages of losing its hydrogen-rich envelope. We have carried out binary evolution calculations which show that (1) if the mass of the giant was ~ 1M⊙when mass transfer onto the neutron star commenced, then the orbital period and the core mass of the giant have increased from ~ 1 to ~ 11.8 days and from ~ 0.15 to ~ 0.21M⊙, respectively, during the mass-transfer epoch, which has lasted for ~ 8 × 108yr, (2) the present long-term average X-ray luminosity is ~ 4 × 1036ergs s−1, which is at least two orders of magnitude lower than the luminosity at the peak of the transient outburst, and (3) the predicted long-term equilibrium rotation rate of the neutron star is remarkably close to the observed pulse rate. The transient nature of GRO J1744–28 may well be related to the final stages of dissipation of the envelope of the giant companion.


2019 ◽  
Vol 490 (3) ◽  
pp. 3355-3364
Author(s):  
Andrey N Semena ◽  
Alexander A Lutovinov ◽  
Ilya A Mereminskiy ◽  
Sergey S Tsygankov ◽  
Andrey E Shtykovsky ◽  
...  

ABSTRACT We report results of the spectral and timing analysis of the Be/X-ray pulsar SXP 4.78 using the data obtained during its recent outburst with NuSTAR, Swift, Chandra, and NICER observatories. Using an overall evolution of the system luminosity, spectral analysis, and variability power spectrum we obtain constraints on the neutron star magnetic field strength. We found a rapid evolution of the variability power spectrum during the rise of the outburst, and absence of the significant changes during the flux decay. Several low frequency quasi-periodic oscillation features are found to emerge on the different stages of the outburst, but no clear clues on their origin were found in the energy spectrum and overall flux behaviour. We use several indirect methods to estimate the magnetic field strength on the neutron star surface and found that most of them suggest magnetic field B ≲ 2 × 1012 G. The strictest upper limit comes from the absence of the cyclotron absorption features in the energy spectra and suggests relatively weak magnetic field B &lt; 6 × 1011 G.)


2020 ◽  
Vol 501 (1) ◽  
pp. 168-178
Author(s):  
Chen Li ◽  
Guobao Zhang ◽  
Mariano Méndez ◽  
Jiancheng Wang ◽  
Ming Lyu

ABSTRACT We have found and analysed 16 multipeaked type-I bursts from the neutron-star low-mass X-ray binary 4U 1636 − 53 with the Rossi X-ray Timing Explorer (RXTE). One of the bursts is a rare quadruple-peaked burst that was not previously reported. All 16 bursts show a multipeaked structure not only in the X-ray light curves but also in the bolometric light curves. Most of the multipeaked bursts appear in observations during the transition from the hard to the soft state in the colour–colour diagram. We find an anticorrelation between the second peak flux and the separation time between two peaks. We also find that in the double-peaked bursts the peak-flux ratio and the temperature of the thermal component in the pre-burst spectra are correlated. This indicates that the double-peaked structure in the light curve of the bursts may be affected by enhanced accretion rate in the disc, or increased temperature of the neutron star.


2020 ◽  
Vol 501 (1) ◽  
pp. 1453-1462
Author(s):  
A S Parikh ◽  
N Degenaar ◽  
J V Hernández Santisteban ◽  
R Wijnands ◽  
I Psaradaki ◽  
...  

ABSTRACT The accretion behaviour in low-mass X-ray binaries (LMXBs) at low luminosities, especially at &lt;1034 erg s−1, is not well known. This is an important regime to study to obtain a complete understanding of the accretion process in LMXBs, and to determine if systems that host neutron stars with accretion-heated crusts can be used probe the physics of dense matter (which requires their quiescent thermal emission to be uncontaminated by residual accretion). Here, we examine ultraviolet (UV) and X-ray data obtained when EXO 0748–676, a crust-cooling source, was in quiescence. Our Hubble Space Telescope spectroscopy observations do not detect the far-UV continuum emission, but do reveal one strong emission line, C iv. The line is relatively broad (≳3500 km s−1), which could indicate that it results from an outflow such as a pulsar wind. By studying several epochs of X-ray and near-UV data obtained with XMM–Newton, we find no clear indication that the emission in the two wavebands is connected. Moreover, the luminosity ratio of LX/LUV ≳ 100 is much higher than that observed from neutron star LMXBs that exhibit low-level accretion in quiescence. Taken together, this suggests that the UV and X-ray emission of EXO 0748–676 may have different origins, and that thermal emission from crust-cooling of the neutron star, rather than ongoing low-level accretion, may be dominating the observed quiescent X-ray flux evolution of this LMXB.


1977 ◽  
Vol 43 ◽  
pp. 34-34
Author(s):  
W. Pietsch ◽  
C. Reppin ◽  
R. Staubert ◽  
J. Truemper ◽  
W. Voges ◽  
...  

A four hour balloon observation of HERC X-l during the 'On-state' in the 35 day cycle was performed on May 3rd, 1976. The 1.24 second pulsations show a pulsed fraction of 58 ± 8% in the 18-31 KeV interval. A pulsed flux (1.24 sec) was discovered in the 31-88 KeV interval with a pulsed fraction of 51 ± 14%. The spectrum of the pulsed flux can be represented up to 50 KeV by an exponential distribution with KT approximately 8 KeV. At approximately 58 KeV a strong and narrow line feature occurs which we interpret as electron cyclotron emission (ΔN = 1 Landau transition) from the polar cap plasma of the rotating neutron star. The corresponding magnetic field strength is approximately 5 x 1012 Gauss, neglecting gravitational red shift. There is evidence for a second harmonic at approximately 110 KeV (ΔN = 2 ).The astrophysical application of this discovery will be discussed in some detail.


Sign in / Sign up

Export Citation Format

Share Document