scholarly journals Colors and patterns of black hole X-ray binary GX 339-4

2020 ◽  
Vol 638 ◽  
pp. A127
Author(s):  
Ilia A. Kosenkov ◽  
Alexandra Veledina ◽  
Valery F. Suleimanov ◽  
Juri Poutanen

Black hole X-ray binaries show signs of nonthermal emission in the optical to near-infrared range. We analyzed optical to near-infrared SMARTS data on GX 339-4 over the 2002–2011 period. Using soft state data, we estimated the interstellar extinction toward the source and characteristic color temperatures of the accretion disk. We show that various spectral states of regular outbursts occupy similar regions on color-magnitude diagrams, and that transitions between the states proceed along the same tracks despite substantial differences in the morphology of the observed light curves. We determine the typical duration of hard-to-soft and soft-to-hard state transitions and the hard state at the decaying stage of the outburst to be one, two, and four weeks, respectively. We find that the failed outbursts cannot be easily distinguished from the regular outbursts at their early stages, but if the source reaches 16 mag in V band, it transits to the soft state. By subtracting the contribution of the accretion disk, we obtain spectra of the nonthermal component, which have constant, nearly flat shapes during the transitions between the hard and soft states. In contrast to the slowly evolving nonthermal component seen at optical and near-infrared wavelengths, the mid-infrared spectrum is strongly variable on short timescales and sometimes shows a prominent excess with a cutoff below 1014 Hz. We show that the radio to optical spectrum can be modeled using three components corresponding to the jet, hot flow, and irradiated accretion disk.

10.14311/1480 ◽  
2011 ◽  
Vol 51 (6) ◽  
Author(s):  
M. Obst ◽  
K. Pottschmidt ◽  
A. Lohfink ◽  
J. Wilms ◽  
M. Böck ◽  
...  

GRS 1758–258 is the least studied of the three persistent black hole X-ray binaries in our Galaxy. It is also one of only two known black hole candidates, including all black hole transients, which shows a decrease of its 3-10 keV flux when entering the thermally dominated soft state, rather than an increase.We present the spectral evolution of GRS 1758–258 from RXTE-PCA observations spanning a time of about 11 years from 1996 to 2007. During this time, seven dim soft states are detected. We also consider INTEGRAL monitoring observations of the source and compare the long-term behavior to that of the bright persistent black hole X-ray binary Cygnus X-1. We discuss the observed state transitions in the light of physical scenarios for black hole transitions.


2020 ◽  
Vol 499 (1) ◽  
pp. 851-861 ◽  
Author(s):  
L Zhang ◽  
D Altamirano ◽  
V A Cúneo ◽  
K Alabarta ◽  
T Enoto ◽  
...  

ABSTRACT We studied the outburst evolution and timing properties of the recently discovered X-ray transient MAXI J1348−630 as observed with NICER. We produced the fundamental diagrams commonly used to trace the spectral evolution, and power density spectra to study the fast X-ray variability. The main outburst evolution of MAXI J1348−630 is similar to that commonly observed in black hole transients. The source evolved from the hard state (HS), through hard- and soft-intermediate states, into the soft state in the outburst rise, and back to the HS in reverse during the outburst decay. At the end of the outburst, MAXI J1348−630 underwent two reflares with peak fluxes approximately one and two orders of magnitude fainter than the main outburst, respectively. During the reflares, the source remained in the HS only, without undergoing any state transitions, which is similar to the so-called ‘failed outbursts’. Different types of quasi-periodic oscillations (QPOs) are observed at different phases of the outburst. Based on our spectral-timing results, we conclude that MAXI J1348−630 is a black hole candidate.


2020 ◽  
Vol 636 ◽  
pp. A51 ◽  
Author(s):  
Maria Hirsch ◽  
Katja Pottschmidt ◽  
David M. Smith ◽  
Arash Bodaghee ◽  
Marion Cadolle Bel ◽  
...  

We present the spectral and timing evolution of the persistent black hole X-ray binary GRS 1758−258 based on almost 12 years of observations using the Rossi X-ray Timing Explorer Proportional Counter Array. While the source was predominantly found in the hard state during this time, it entered the thermally dominated soft state seven times. In the soft state GRS 1758−258 shows a strong decline in flux above 3 keV rather than the pivoting flux around 10 keV more commonly shown by black hole transients. In its 3–20 keV hardness intensity diagram, GRS 1758−258 shows a hysteresis of hard and soft state fluxes typical for transient sources in outburst. The RXTE-PCA and RXTE-ASM long-term light curves do not show any orbital modulations in the range of 2–30 d. However, in the dynamic power spectra significant peaks drift between 18.47 and 18.04 d for the PCA data, while less significant signatures between 19 d and 20 d are seen for the ASM data as well as for the Swift/BAT data. We discuss different models for the hysteresis behavior during state transitions as well as possibilities for the origin of the long term variation in the context of a warped accretion disk.


2020 ◽  
Vol 492 (4) ◽  
pp. 5271-5279 ◽  
Author(s):  
Nick Higginbottom ◽  
Christian Knigge ◽  
Stuart A Sim ◽  
Knox S Long ◽  
James H Matthews ◽  
...  

ABSTRACT X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous (${L = 0.5 \, L_{\mathrm{\mathrm{ Edd}}}}$) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with ${\dot{M}_{\mathrm{ wind}} \simeq 2 \, \dot{M}_{\mathrm{ acc}}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe xxv and Fe xxvi features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state – the peculiar GRS 1915+105 – we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.


2020 ◽  
Vol 498 (1) ◽  
pp. L40-L45
Author(s):  
Thomas J Maccarone ◽  
Arlo Osler ◽  
James C A Miller-Jones ◽  
P Atri ◽  
David M Russell ◽  
...  

ABSTRACT We present extremely deep upper limits on the radio emission from 4U 1957+11, an X-ray binary that is generally believed to be a persistently accreting black hole that is almost always in the soft state. We discuss a more comprehensive search for Type I bursts than in past work, revealing a stringent upper limit on the burst rate, bolstering the case for a black hole accretor. The lack of detection of this source at the 1.07 μJy/beam noise level indicates jet suppression that is stronger than expected even in the most extreme thin disc models for radio jet production – the radio power here is 1500–3700 times lower than the extrapolation of the hard state radio/X-ray correlation, with the uncertainties depending primarily on the poorly constrained source distance. We also discuss the location and velocity of the source and show that it must have either formed in the halo or with a strong asymmetric natal kick.


Author(s):  
JULIEN MALZAC

We discuss the nature of the X-ray emitting plasma of black hole binaries. It is well known that the temperature and optical depth of the Comptonising electrons of the X-ray corona of black hole binaries can be measured using spectroscopy in the 1 keV-1 MeV energy band. We emphasize recent developments in the modeling of high energy radiation processes which allow us to constrain other important physical parameters of the corona, such as the strength of magnetic field, or the temperature of the ions. The results appear to challenge current accretion models. In particular, standard advection dominated accretion flow do not match the observed properties of bright hard state X-ray binaries such as Cygnus X-1 or GX 339-4. On the other hand, we find that all the data would be consistent with a multi-zone magnetically dominated hot accretion flow model. We also emphasize that besides the usual spectral state transitions observed at luminosities above a few percent of Eddington, there is observational evidence for at least two additional, more subtle, radiative transitions occuring at lower luminosities.


2020 ◽  
Vol 496 (1) ◽  
pp. L96-L100
Author(s):  
Ilia A Kosenkov ◽  
Alexandra Veledina ◽  
Andrei V Berdyugin ◽  
Vadim Kravtsov ◽  
Vilppu Piirola ◽  
...  

ABSTRACT We describe the first complete polarimetric data set of the entire outburst of a low-mass black hole X-ray binary system and discuss the constraints for geometry and radiative mechanisms it imposes. During the decaying hard state, when the optical flux is dominated by the non-thermal component, the observed polarization is consistent with the interstellar values in all filters. During the soft state, the intrinsic polarization of the source is small, ∼0.15 per cent in B and V filters, and is likely produced in the irradiated disc. A much higher polarization, reaching ∼0.5 per cent in V and R filters, at a position angle of ∼25○ observed in the rising hard state coincides in time with the detection of winds in the system. This angle coincides with the position angle of the jet. The detected optical polarization is best explained by scattering of the non-thermal (hot flow or jet base) radiation in an equatorial wind.


2010 ◽  
Vol 6 (S275) ◽  
pp. 294-298 ◽  
Author(s):  
Pieter van Oers ◽  
Sera Markoff

AbstractGRS 1915+105 is a very peculiar black hole binary that exhibits accretion-related states that are not observed in any other stellar-mass black hole system. One of these states, however – referred to as the plateau state – may be related to the canonical hard state of black hole X-ray binaries. Both the plateau and hard state are associated with steady, relatively lower X-ray emission and flat/inverted radio emission, that is sometimes resolved into compact, self-absorbed jets. To investigate the relationship between the plateau and the hard state, we fit two multi-wavelength observations using a steady-state outflow-dominated model, developed for hard state black hole binaries. The data sets consist of quasi-simultaneous observations in radio, near-infrared and X-ray bands. Interestingly, we find both significant differences between the two plateau states, as well as between the best-fit model parameters and those representative of the hard state. We discuss our interpretation of these results, and the possible implications for GRS 1915+105's relationship to canonical black hole candidates.


2020 ◽  
Vol 496 (2) ◽  
pp. 1001-1012 ◽  
Author(s):  
V A Cúneo ◽  
K Alabarta ◽  
L Zhang ◽  
D Altamirano ◽  
M Méndez ◽  
...  

ABSTRACT The black hole candidate and X-ray binary MAXI J1535−571 was discovered in 2017 September. During the decay of its discovery outburst, and before returning to quiescence, the source underwent at least four reflaring events, with peak luminosities of ∼1035–36 erg s−1 (d/4.1 kpc)2. To investigate the nature of these flares, we analysed a sample of NICER (Neutron star Interior Composition Explorer) observations taken with almost daily cadence. In this work, we present the detailed spectral and timing analysis of the evolution of the four reflares. The higher sensitivity of NICER at lower energies, in comparison with other X-ray detectors, allowed us to constrain the disc component of the spectrum at ∼0.5 keV. We found that during each reflare the source appears to trace out a q-shaped track in the hardness–intensity diagram similar to those observed in black hole binaries during full outbursts. MAXI J1535−571 transits between the hard state (valleys) and softer states (peaks) during these flares. Moreover, the Comptonized component is undetected at the peak of the first reflare, while the disc component is undetected during the valleys. Assuming the most likely distance of 4.1 kpc, we find that the hard-to-soft transitions take place at the lowest luminosities ever observed in a black hole transient, while the soft-to-hard transitions occur at some of the lowest luminosities ever reported for such systems.


2019 ◽  
Vol 487 (1) ◽  
pp. 1439-1446
Author(s):  
Qingcui Bu ◽  
Lian Tao ◽  
Yu Lu ◽  
Shuangnan Zhang ◽  
Liang Zhang ◽  
...  

ABSTRACT We studied the long-term evolution of the spectral–temporal correlated properties of the black hole candidate Swift J1753.5−0127 from the onset of its outburst until 2011 with the Rossi X-ray Timing Explorer (RXTE). The source stayed most of its lifetime during hard state, with occasionally transitioned to the hard intermediate state. Similar to typical black hole transients, Swift J1753.5−0127 traces a clear hard line in absolute rms–intensity diagram during the low hard state, with expected highest absolute rms, while shows a clear turn during the hard intermediate state, accompanied by lower absolute rms. Different from Cyg X-1, we found that frequency-dependent time lag increased significantly in the 0.02–3.2 Hz band during state transition in this source. The X-ray time lags in 0.02–3.2 Hz can therefore be used as indicators of state transition in this source. Type-C quasi-periodic oscillation frequency is positively related with its fractional rms and X-ray photon index, suggesting a moving inwards disc/corona scenario. We discussed the physical interpretation of our results in this paper.


Sign in / Sign up

Export Citation Format

Share Document