scholarly journals Highly Alfvénic slow solar wind at 0.3 au during a solar minimum: Helios insights for Parker Solar Probe and Solar Orbiter

2020 ◽  
Vol 633 ◽  
pp. A166 ◽  
Author(s):  
D. Perrone ◽  
R. D’Amicis ◽  
R. De Marco ◽  
L. Matteini ◽  
D. Stansby ◽  
...  

Alfvénic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfvénicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfvénic. Here we compare three different regimes of solar wind, in terms of Alfvénic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfvénic slow intervals share some common characteristics. This would suggest a similar solar origin, with the latter coming from over-expanded magnetic field lines, in agreement with observations at 1 au and at the maximum of the solar cycle. Due to the Alfvénic nature of the fluctuations in both fast and Alfvénic slow winds, we observe a well-defined correlation between the flow speed and the angle between magnetic field vector and radial direction. The high level of Alfvénicity is also responsible of intermittent enhancements (i.e. spikes), in plasma speed. Moreover, only for the Alfvénic intervals do we observe a break between the inertial range and large scales, on about the timescale typical of the Alfvénic fluctuations and where the magnetic fluctuations saturate, limited by the magnitude of the local magnetic field. In agreement with this, we recover a characteristic low-frequency 1/f scaling, as expected for fluctuations that are scale-independent. This work is directly relevant for the next solar missions, Parker Solar Probe and Solar Orbiter. One of the goals of these two missions is to study the origin and evolution of slow solar wind. In particular, Parker Solar Probe will give information about the Alfvénic slow wind in the unexplored region much closer to the Sun and Solar Orbiter will allow us to connect the observed physics to the source of the plasma.

2019 ◽  
Vol 627 ◽  
pp. A96 ◽  
Author(s):  
R. Bruno ◽  
D. Telloni ◽  
L. Sorriso-Valvo ◽  
R. Marino ◽  
R. De Marco ◽  
...  

Fluctuations of solar wind magnetic field and plasma parameters exhibit a typical turbulence power spectrum with a spectral index ranging between ∼5/3 and ∼3/2. In particular, at 1 AU, the magnetic field spectrum, observed within fast corotating streams, also shows a clear steepening for frequencies higher than the typical proton scales, of the order of ∼3 × 10−1 Hz, and a flattening towards 1/f at frequencies lower than ∼10−3 Hz. However, the current literature reports observations of the low-frequency break only for fast streams. Slow streams, as observed to date, have not shown a clear break, and this has commonly been attributed to slow wind intervals not being long enough. Actually, because of the longer transit time from the Sun, slow wind turbulence would be older and the frequency break would be shifted to lower frequencies with respect to fast wind. Based on this hypothesis, we performed a careful search for long-lasting slow wind intervals throughout 12 years of Wind satellite measurements. Our search, based on stringent requirements not only on wind speed but also on the level of magnetic compressibility and Alfvénicity of the turbulent fluctuations, yielded 48 slow wind streams lasting longer than 7 days. This result allowed us to extend our study to frequencies sufficiently low and, for the first time in the literature, we are able to show that the 1/f magnetic spectral scaling is also present in the slow solar wind, provided the interval is long enough. However, this is not the case for the slow wind velocity spectrum, which keeps the typical Kolmogorov scaling throughout the analysed frequency range. After ruling out the possible role of compressibility and Alfvénicity for the 1/f scaling, a possible explanation in terms of magnetic amplitude saturation, as recently proposed in the literature, is suggested.


1994 ◽  
Vol 12 (2/3) ◽  
pp. 105-112 ◽  
Author(s):  
R. Bruno ◽  
U. Villante ◽  
A. Stecca

Abstract. In situ measurements of the solar wind largely cover more than two solar magnetic activity cycles, namely 20 and 21. This is a very appealing opportunity to study the influence of the activity cycle on the behaviour of the solar wind parameters. As a matter of fact, many authors so far have studied this topic comparing the long-term magnetic field and plasma averages. However, when the average values are evaluated on a data sample whose duration is comparable with (or even longer than) the solar rotation period we lose information about the contribution due to the fast and the slow solar wind components. Thus, discriminating in velocity plays a key role in understanding solar cycle effects on the solar wind. Based on these considerations, we performed a separate analysis for fast and slow wind, respectively. In particular, we found that: (a) fast wind carries a slightly larger momentum flux density at 1 AU, probably due to dynamic stream-stream interaction; (b) proton number density in slow wind is more cycle dependent than in fast wind and decreases remarkably across solar maximum; (c) fast wind generally carries a magnetic field intensity stronger than that carried by the slow wind; (d) we found no evidence for a positive correlation between velocity and field intensity as predicted by some theories of solar wind acceleration; (e) our results would support an approximately constant divergence of field lines associated with corotating high-velocity streams.


2021 ◽  
Vol 923 (2) ◽  
pp. 193
Author(s):  
R. Bandyopadhyay ◽  
D. J. McComas

Abstract Solar wind magnetic fluctuations exhibit anisotropy due to the presence of a mean magnetic field in the form of the Parker spiral. Close to the Sun, direct measurements were not available until the recently launched Parker Solar Probe (PSP) mission. The nature of the anisotropy and geometry of the magnetic fluctuations play a fundamental role in dissipation processes and in the transport of energetic particles in space. Using PSP data, we present measurements of the geometry and anisotropy of the inner heliosphere magnetic fluctuations, from fluid to kinetic scales. The results are surprising and different from 1 au observations. We find that fluctuations evolve characteristically with size scale. However, unlike 1 au solar wind, at the outer scale, the fluctuations are dominated by wavevectors quasi-parallel to the local magnetic field. In the inertial range, average wavevectors become less field aligned, but still remain more field aligned than near-Earth solar wind. In the dissipation range, the wavevectors become almost perpendicular to the local magnetic field in the dissipation range, to a much higher degree than those indicated by 1 au observations. We propose that this reduced degree of anisotropy in the outer scale and inertial range is due to the nature of large-scale forcing outside the solar corona.


2019 ◽  
Vol 492 (1) ◽  
pp. 39-44 ◽  
Author(s):  
D Stansby ◽  
L Matteini ◽  
T S Horbury ◽  
D Perrone ◽  
R D’Amicis ◽  
...  

ABSTRACT Although the origins of slow solar wind are unclear, there is increasing evidence that at least some of it is released in a steady state on overexpanded coronal hole magnetic field lines. This type of slow wind has similar properties to the fast solar wind, including strongly Alfvénic fluctuations. In this study, a combination of proton, alpha particle, and electron measurements are used to investigate the kinetic properties of a single interval of slow Alfvénic wind at 0.35 au. It is shown that this slow Alfvénic interval is characterized by high alpha particle abundances, pronounced alpha–proton differential streaming, strong proton beams, and large alpha-to-proton temperature ratios. These are all features observed consistently in the fast solar wind, adding evidence that at least some Alfvénic slow solar wind also originates in coronal holes. Observed differences between speed, mass flux, and electron temperature between slow Alfvénic and fast winds are explained by differing magnetic field geometry in the lower corona.


2010 ◽  
Vol 28 (1) ◽  
pp. 233-246 ◽  
Author(s):  
B. Lavraud ◽  
A. Opitz ◽  
J. T. Gosling ◽  
A. P. Rouillard ◽  
K. Meziane ◽  
...  

Abstract. Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs) in the vicinity of corotating interaction regions (CIRs) during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used), but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream), as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1) the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2) that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to CIRs.


2007 ◽  
Vol 25 (5) ◽  
pp. 1175-1182 ◽  
Author(s):  
K. E. Whitaker ◽  
T. A. Fritz ◽  
J. Chen ◽  
M. Klida

Abstract. Observations on 30 October 1978 show the ISEE-1 spacecraft passing though the high-altitude dayside northern magnetospheric cusp region from roughly 16:00 to 18:30 UT, during a slow solar wind period (~380 km/s). More than two orders of magnitude enhancements of the cusp energetic particle (CEP) fluxes were observed along with a depressed and turbulent local magnetic field. The observed variations of the pitch angle distributions (PAD) provide a unique opportunity to determine the structure of the cusp and the origin of the CEP. Through a boundary sounding technique, the location and orientation of the cusp poleward (or backside) boundary was observed for almost 10 min during which time it appeared initially to be stationary in the GSM/GSE X-direction and then moved sunward about 0.12 Earth radii (RE). The orientation remained approximately perpendicular to the GSM/GSE X-axis until it was observed to rotate by 60 degrees in ~3 min before ISEE-1 was fully inside the cusp cavity. The cavity itself was filled with CEP fluxes displaying large anisotropies, indicative of their source being located below (Earthward) of the satellite location. The spacecraft entered from the backside of the cusp, then traveled ~4 RE through the cavity, and exited through the "top" of the cavity leaving a region of energetic ions below. The PADs demonstrate that the bow shock cannot be the main source of the observed CEPs. The CEP fluxes were measured at about 8.5 h MLT when the IMF had both an 8–10 nT duskward and southward component.


2019 ◽  
Vol 15 (S354) ◽  
pp. 363-366
Author(s):  
Belén Acosta ◽  
Denisse Pastén ◽  
Pablo S. Moya

AbstractWe have studied turbulent plasma as a complex system applying the method known as Horizontal Visibility Graph (HVG) to obtain the Kullback-Leibler Divergence (KLD) as a first approach to characterize the reversibility of the time series of the magnetic fluctuations. For this, we have developed the method on Particle In Cell (PIC) simulations for a magnetized plasma and on solar wind magnetic time series, considering slow and fast wind. Our numerical results show that low irreversibility values are verified for magnetic field time series associated with Maxwellian distributions. In addition, considering the solar wind plasma, our preliminary results seem to indicate that greater irreversibility degrees are reached by the magnetic field associated with slow solar wind.


2021 ◽  
Vol 922 (2) ◽  
pp. 92
Author(s):  
Honghong Wu ◽  
Chuanyi Tu ◽  
Xin Wang ◽  
Liping Yang

Abstract The fluctuations observed in the slow solar wind at 1 au by the WIND spacecraft are shown by recent studies to consist of mainly magnetic-field directional turning and magnetic-velocity alignment structure (MVAS). How these structures are created has been a question because the nature of the fluctuations in the near-Sun region remains unknown. Here, we present an analysis of the measurements in the slow solar wind from 0.1−0.3 au by Parker Solar Probe during its first six orbits. We present the distributions in the C vb ′ – σ r plane of both the occurrence and average amplitudes of the fluctuations, including the magnetic field, the velocity, and the Elsässer variables, where C vb ′ is the correlation coefficient between the magnetic and velocity fluctuations multiplied by the opposite sign of the radial component of the mean magnetic field and σ r is the normalized residual energy. We find that the dominant composition is the outward-propagating Alfvénic fluctuations. We find Alfvénic fluctuations with C vb ′ > 0.95 , in which the amplitudes of z + reach 60 km s−1 and those of z − are close to the observational uncertainty. We also find a region with high C vb ′ and moderate minus σ r in which the fluctuations are considered MVAS being magnetic dominated with the amplitude of magnetic fluctuations reaching 60 km s−1. We provide empirical relations between the velocity fluctuation amplitude and C vb ′ . The comparison between these results and those observed at 1 au may provide some clues as to the nature and evolution of the fluctuations.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-18 ◽  
Author(s):  
M. Díaz-Michelena ◽  
R. Sanz ◽  
M. F. Cerdán ◽  
A. B. Fernández

Abstract. MOURA instrument is a three-axis magnetometer and gradiometer designed and developed for Mars MetNet Precursor mission. The initial scientific goal of the instrument is to measure the local magnetic field in the surroundings of the lander i.e. to characterize the magnetic environment generated by the remanent magnetization of the crust and the superimposed daily variations of the field produced either by the solar wind incidence or by the thermomagnetic variations. Therefore, the qualification model (QM) will be tested in representative scenarios like magnetic surveys on terrestrial analogues of Mars and monitoring solar events, with the aim to achieve some experience prior to the arrival to Mars. In this work, we present a practical first approach for calibration of the instrument in the laboratory; a finer correction after the comparison of MOURA data with those of a reference magnetometer located in San Pablo de los Montes (SPT) INTERMAGNET Observatory; and a comparative recording of a geomagnetic storm as a demonstration of the compliance of the instrument capabilities with the scientific objectives.


Sign in / Sign up

Export Citation Format

Share Document