scholarly journals Geometry of Magnetic Fluctuations near the Sun from the Parker Solar Probe

2021 ◽  
Vol 923 (2) ◽  
pp. 193
Author(s):  
R. Bandyopadhyay ◽  
D. J. McComas

Abstract Solar wind magnetic fluctuations exhibit anisotropy due to the presence of a mean magnetic field in the form of the Parker spiral. Close to the Sun, direct measurements were not available until the recently launched Parker Solar Probe (PSP) mission. The nature of the anisotropy and geometry of the magnetic fluctuations play a fundamental role in dissipation processes and in the transport of energetic particles in space. Using PSP data, we present measurements of the geometry and anisotropy of the inner heliosphere magnetic fluctuations, from fluid to kinetic scales. The results are surprising and different from 1 au observations. We find that fluctuations evolve characteristically with size scale. However, unlike 1 au solar wind, at the outer scale, the fluctuations are dominated by wavevectors quasi-parallel to the local magnetic field. In the inertial range, average wavevectors become less field aligned, but still remain more field aligned than near-Earth solar wind. In the dissipation range, the wavevectors become almost perpendicular to the local magnetic field in the dissipation range, to a much higher degree than those indicated by 1 au observations. We propose that this reduced degree of anisotropy in the outer scale and inertial range is due to the nature of large-scale forcing outside the solar corona.

2021 ◽  
Vol 922 (2) ◽  
pp. 188
Author(s):  
L.-L. Zhao ◽  
G. P. Zank ◽  
J. S. He ◽  
D. Telloni ◽  
L. Adhikari ◽  
...  

Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identify the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing to the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere.


2020 ◽  
Author(s):  
Ying Wang ◽  
Jiansen He ◽  
Die Duan ◽  
Xingyu Zhu

<p>By analyzing the turbulent magnetic field data from PSP, we find that: the solar wind turbulence in the inner heliosphere close to the Sun has formed the transition from multifractal intermittency at MHD scales to monofractal intermittency at kinetic scales. The order-dependent scaling exponent of the multi-order structure function shows a concave profile indicating the multifractal property at MHD scales, while its counterpart at kinetic scales shows a linear trend suggesting the monofractal property. We also find that, the closer to the sun, the more obvious the concave profile of the scaling exponent in the inertial range, which indicates that the multifractal characteristic of the magnetic field turbulence intermittency is also more evident when getting closer to the Sun.</p><p>Based on the Castaing description of the probability distribution function(PDF) of the disturbance difference, the key parameters(μ & λ^2) of the Castaing function are estimated as a function of scale. We find that: (1) when close to the sun (R~0.17 AU), the break point of μ is about 0.2 second, and the peak point of λ^2 is about 0.6 second, the two of which are about three times different in scale; (2) when far from the sun (R~0.8 AU), the break point of μ is about 1 second and the peak point of λ^2 is about 3 seconds, the two of which are also about three times different in scale. We also point out that the profiles (including the break/peak position) of both the parameters (μ & λ^2) along with the scale together determine the profile (including the spectral breaks) of the power spectrum.</p><p>Following the PP98 model function of incompressible MHD turbulent cascade rate (εZ), we first compared the cascade rate εZ with εB=<δB^3>/τ at the distance close to the sun, we find that the two trends over scales are in good agreement with one another. We therefore suggest that, to some extent (e.g. in the inertial region), εB=<δB^3>/τ can be used as a proxy of the cascade rate εZ. For the first time, by statistical analysis, we obtained that εB satisfies the following relation with the scale and the heliocentric distance: εB=((τ/τ0)^α)((r/r0)^β). In the inertial range, α changes from about -0.5 to about 0.5 as r increases from 0.17 AU to 0.81 AU, and β is about 6.4; in the kenetic range, when r increases from 0.17 AU to 0.25 AU, α keeps at about 2, and β is about 12.8. The εB(τ,r) expression given in this work, is believed to help understanding the transport and cascade processes of solar wind turbulence in the inner heliosphere. </p><p>Corresponding author:<br>Jiansen HE, [email protected]</p><p>Acknowledgements:<br>We would like to thank the PSP team for providing the data of PSP to the public.</p>


2011 ◽  
Vol 7 (S286) ◽  
pp. 164-167
Author(s):  
M. E. Ruiz ◽  
S. Dasso ◽  
W. H. Matthaeus ◽  
E. Marsch ◽  
J. M. Weygand

AbstractThe evolution of the turbulent properties in the solar wind, during the travel of the parcels of fluid from the Sun to the outer heliosphere still has several unanswered questions. In this work, we will present results of an study on the dynamical evolution of turbulent magnetic fluctuations in the inner heliosphere. We focused on the anisotropy of the turbulence integral scale, measured parallel and perpendicular to the direction of the local mean magnetic field, and study its evolution according to the aging of the plasma parcels observed at different heliodistances. As diagnostic tool we employed single-spacecraft correlation functions computed with observations collected by Helios 1 & 2 probes over nearly one solar cycle. Our results are consistent with driving modes with wave-vectors parallel to the direction of the local mean magnetic field near the Sun, and a progressive spectral transfer of energy to modes with perpendicular wave-vectors. Advances made in this direction, as those presented here, will contribute to our understanding of the magnetohydrodynamical turbulence and Alfvénic-wave activity for this system, and will provide a quantitative input for models of charged solar and galactic energetic particles propagation and diffusion throughout the inner heliosphere.


2019 ◽  
Vol 632 ◽  
pp. A92 ◽  
Author(s):  
R. D’Amicis ◽  
R. De Marco ◽  
R. Bruno ◽  
D. Perrone

Solar wind fluctuations are a mixture of propagating disturbances and advected structures that transfer into the interplanetary space the complicated magnetic topology present at the basis of the corona. The large-scale interplanetary magnetic field introduces a preferential direction in the solar wind, which is particularly relevant for both the propagation of the fluctuations and their anisotropy and for the topology of the structures advected by the wind. This paper focusses on a particular link observed between angular displacements of the local magnetic field orientation from the radial direction and values of the proton temperature. In particular, we find that observations by Helios and Wind show a positive correlation between proton temperature and magnetic field orientation. This is especially true within Alfvénic wind characterized by large-amplitude fluctuations of the background field orientation. Moreover, in the case of Wind, we found a robust dependence of the perpendicular component of the proton temperature on the magnetic field angular displacement. We interpret this signature as possibly due to a physical mechanism related to the proton cyclotron resonance. Finally, by simulating the sampling procedure of the proton velocity distribution function (VDF) of an electrostatic analyzer, we show that the observed temperature anisotropy is not due to instrumental effects.


2020 ◽  
Vol 633 ◽  
pp. A166 ◽  
Author(s):  
D. Perrone ◽  
R. D’Amicis ◽  
R. De Marco ◽  
L. Matteini ◽  
D. Stansby ◽  
...  

Alfvénic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfvénicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfvénic. Here we compare three different regimes of solar wind, in terms of Alfvénic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfvénic slow intervals share some common characteristics. This would suggest a similar solar origin, with the latter coming from over-expanded magnetic field lines, in agreement with observations at 1 au and at the maximum of the solar cycle. Due to the Alfvénic nature of the fluctuations in both fast and Alfvénic slow winds, we observe a well-defined correlation between the flow speed and the angle between magnetic field vector and radial direction. The high level of Alfvénicity is also responsible of intermittent enhancements (i.e. spikes), in plasma speed. Moreover, only for the Alfvénic intervals do we observe a break between the inertial range and large scales, on about the timescale typical of the Alfvénic fluctuations and where the magnetic fluctuations saturate, limited by the magnitude of the local magnetic field. In agreement with this, we recover a characteristic low-frequency 1/f scaling, as expected for fluctuations that are scale-independent. This work is directly relevant for the next solar missions, Parker Solar Probe and Solar Orbiter. One of the goals of these two missions is to study the origin and evolution of slow solar wind. In particular, Parker Solar Probe will give information about the Alfvénic slow wind in the unexplored region much closer to the Sun and Solar Orbiter will allow us to connect the observed physics to the source of the plasma.


2018 ◽  
Vol 611 ◽  
pp. L5 ◽  
Author(s):  
M. I. R. Alves ◽  
F. Boulanger ◽  
K. Ferrière ◽  
L. Montier

The magnetic field in the local interstellar medium does not follow the large-scale Galactic magnetic field. The local magnetic field has probably been distorted by the Local Bubble, a cavity of hot ionized gas extending all around the Sun and surrounded by a shell of cold neutral gas and dust. However, so far no conclusive association between the local magnetic field and the Local Bubble has been established. Here we develop an analytical model for the magnetic field in the shell of the Local Bubble, which we represent as an inclined spheroid, off-centred from the Sun. We fit the model to Planck dust polarized emission observations within 30° of the Galactic poles. We find a solution that is consistent with a highly deformed magnetic field, with significantly different directions towards the north and south Galactic poles. This work sets a methodological framework for modelling the three-dimensional (3D) structure of the magnetic field in the local interstellar medium, which is a most awaited input for large-scale Galactic magnetic field models.


2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


2016 ◽  
Vol 12 (S328) ◽  
pp. 237-239
Author(s):  
A. A. Vidotto

AbstractSynoptic maps of the vector magnetic field have routinely been made available from stellar observations and recently have started to be obtained for the solar photospheric field. Although solar magnetic maps show a multitude of details, stellar maps are limited to imaging large-scale fields only. In spite of their lower resolution, magnetic field imaging of solar-type stars allow us to put the Sun in a much more general context. However, direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, I present the results of a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. This approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well, and is entirely consistent with the description adopted in several stellar studies. This method can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-18 ◽  
Author(s):  
M. Díaz-Michelena ◽  
R. Sanz ◽  
M. F. Cerdán ◽  
A. B. Fernández

Abstract. MOURA instrument is a three-axis magnetometer and gradiometer designed and developed for Mars MetNet Precursor mission. The initial scientific goal of the instrument is to measure the local magnetic field in the surroundings of the lander i.e. to characterize the magnetic environment generated by the remanent magnetization of the crust and the superimposed daily variations of the field produced either by the solar wind incidence or by the thermomagnetic variations. Therefore, the qualification model (QM) will be tested in representative scenarios like magnetic surveys on terrestrial analogues of Mars and monitoring solar events, with the aim to achieve some experience prior to the arrival to Mars. In this work, we present a practical first approach for calibration of the instrument in the laboratory; a finer correction after the comparison of MOURA data with those of a reference magnetometer located in San Pablo de los Montes (SPT) INTERMAGNET Observatory; and a comparative recording of a geomagnetic storm as a demonstration of the compliance of the instrument capabilities with the scientific objectives.


Sign in / Sign up

Export Citation Format

Share Document