scholarly journals Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations

2010 ◽  
Vol 28 (1) ◽  
pp. 233-246 ◽  
Author(s):  
B. Lavraud ◽  
A. Opitz ◽  
J. T. Gosling ◽  
A. P. Rouillard ◽  
K. Meziane ◽  
...  

Abstract. Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs) in the vicinity of corotating interaction regions (CIRs) during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used), but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream), as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1) the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2) that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to CIRs.

2007 ◽  
Vol 25 (5) ◽  
pp. 1175-1182 ◽  
Author(s):  
K. E. Whitaker ◽  
T. A. Fritz ◽  
J. Chen ◽  
M. Klida

Abstract. Observations on 30 October 1978 show the ISEE-1 spacecraft passing though the high-altitude dayside northern magnetospheric cusp region from roughly 16:00 to 18:30 UT, during a slow solar wind period (~380 km/s). More than two orders of magnitude enhancements of the cusp energetic particle (CEP) fluxes were observed along with a depressed and turbulent local magnetic field. The observed variations of the pitch angle distributions (PAD) provide a unique opportunity to determine the structure of the cusp and the origin of the CEP. Through a boundary sounding technique, the location and orientation of the cusp poleward (or backside) boundary was observed for almost 10 min during which time it appeared initially to be stationary in the GSM/GSE X-direction and then moved sunward about 0.12 Earth radii (RE). The orientation remained approximately perpendicular to the GSM/GSE X-axis until it was observed to rotate by 60 degrees in ~3 min before ISEE-1 was fully inside the cusp cavity. The cavity itself was filled with CEP fluxes displaying large anisotropies, indicative of their source being located below (Earthward) of the satellite location. The spacecraft entered from the backside of the cusp, then traveled ~4 RE through the cavity, and exited through the "top" of the cavity leaving a region of energetic ions below. The PADs demonstrate that the bow shock cannot be the main source of the observed CEPs. The CEP fluxes were measured at about 8.5 h MLT when the IMF had both an 8–10 nT duskward and southward component.


2020 ◽  
Vol 494 (3) ◽  
pp. 3642-3655 ◽  
Author(s):  
Allan R Macneil ◽  
Mathew J Owens ◽  
Robert T Wicks ◽  
Mike Lockwood ◽  
Sarah N Bentley ◽  
...  

ABSTRACT Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfvénic, HMF inversions in the inner heliosphere, known as ‘switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shears, draping over ejecta, or waves and turbulence. Such processes are expected to lead to a qualitatively radial evolution of inverted HMF structures. Using Helios measurements spanning 0.3–1 au, we examine the occurrence rate of inverted HMF, as well as other magnetic field morphologies, as a function of radial distance r, and find that it continually increases. This trend may be explained by inverted HMF observed between 0.3 and 1 au being primarily driven by one or more of the above in-transit processes, rather than created at the Sun. We make suggestions as to the relative importance of these different processes based on the evolution of the magnetic field properties associated with inverted HMF. We also explore alternative explanations outside of our suggested driving processes which may lead to the observed trend.


2011 ◽  
Vol 7 (S286) ◽  
pp. 179-184 ◽  
Author(s):  
E. W. Cliver

AbstractCliver & Ling (2010) recently suggested that the solar wind had a floor or ground-state magnetic field strength at Earth of ~2.8 nT and that the source of the field was the slow solar wind. This picture has recently been given impetus by the evidence presented by Schrijver et al. (2011) that the Sun has a minimal magnetic state that was approached globally in 2009, a year in which Earth was imbedded in slow solar wind ~70% of the time. A precursor relation between the solar dipole field strength at solar minimum and the peak sunspot number (SSNMAX) of the subsequent 11-yr cycle suggests that during Maunder-type minima (when SSNMAX was ~0), the solar polar field strength approaches zero - indicating weak or absent polar coronal holes and an increase to nearly ~100% in the time that Earth spends in slow solar wind.


2007 ◽  
Vol 25 (12) ◽  
pp. 2633-2640 ◽  
Author(s):  
B. M. Walsh ◽  
T. A. Fritz ◽  
N. M. Lender ◽  
J. Chen ◽  
K. E. Whitaker

Abstract. Observations by the ISEE-1 and ISEE-2 spacecraft on 29 September 1978 show large CEP (Cusp Energetic Particle) fluxes while passing through the dayside magnetospheric cusp in near coincident orbits. The event was observed around 11:00 MLT between roughly 12:30 and 13:00 UT by ISEE-1 and 12:00 and 13:00 UT by ISEE-2. During these periods, both electron and ion fluxes increased by more than two orders of magnitude, with the electron flux showing a strong peak at a pitch angle of 90°. The solar wind was ~710 km s−1 and the Dst was ~−200 nT, suggesting the occurrence of a strong geomagnetic storm. The ISEE-1 and ISEE-2 observations, however, show no time-energy dispersion of the CEPs, leading us to believe that these particles could not be the result of substorm processes in the magnetotail. The local magnetic field was depressed and extremely turbulent. Changes in the magnitude of the magnetic field anticorrelate closely to variations of the electron flux. The observations in electron flux peaking at 90° and the close anticorrelation between the local magnetic field strength and electron flux are unique and provide evidence of a potential local source for these energetic particles.


2020 ◽  
Vol 633 ◽  
pp. A166 ◽  
Author(s):  
D. Perrone ◽  
R. D’Amicis ◽  
R. De Marco ◽  
L. Matteini ◽  
D. Stansby ◽  
...  

Alfvénic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfvénicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfvénic. Here we compare three different regimes of solar wind, in terms of Alfvénic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfvénic slow intervals share some common characteristics. This would suggest a similar solar origin, with the latter coming from over-expanded magnetic field lines, in agreement with observations at 1 au and at the maximum of the solar cycle. Due to the Alfvénic nature of the fluctuations in both fast and Alfvénic slow winds, we observe a well-defined correlation between the flow speed and the angle between magnetic field vector and radial direction. The high level of Alfvénicity is also responsible of intermittent enhancements (i.e. spikes), in plasma speed. Moreover, only for the Alfvénic intervals do we observe a break between the inertial range and large scales, on about the timescale typical of the Alfvénic fluctuations and where the magnetic fluctuations saturate, limited by the magnitude of the local magnetic field. In agreement with this, we recover a characteristic low-frequency 1/f scaling, as expected for fluctuations that are scale-independent. This work is directly relevant for the next solar missions, Parker Solar Probe and Solar Orbiter. One of the goals of these two missions is to study the origin and evolution of slow solar wind. In particular, Parker Solar Probe will give information about the Alfvénic slow wind in the unexplored region much closer to the Sun and Solar Orbiter will allow us to connect the observed physics to the source of the plasma.


2005 ◽  
Vol 23 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
S. E. Milan

Abstract. Dayside UV emissions in Saturn's polar ionosphere have been suggested to be the first observational evidence of the kronian "cusp" (Gérard et al., 2004). The emission has two distinct states. The first is a bright arc-like feature located in the pre-noon sector, and the second is a more diffuse "spot" of aurora which lies poleward of the general location of the main auroral oval, which may be related to different upstream interplanetary magnetic field (IMF) orientations. Here we take up the suggestion that these emissions correspond to the cusp. However, direct precipitation of electrons in the cusp regions is not capable of producing significant UV aurora. We have therefore investigated the possibility that the observed UV emissions are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, akin to flux transfer events seen at the Earth. We devise a conceptual model of pulsed reconnection at the low-latitude dayside magnetopause for the case of northwards IMF which will give rise to pulsed twin-vortical flows in the magnetosphere and ionosphere in the vicinity of the open-closed field-line boundary, and hence to bi-polar field-aligned currents centred in the vortical flows. During intervals of high-latitude lobe reconnection for southward IMF, we also expect to have pulsed twin-vortical flows and corresponding bi-polar field-aligned currents. The vortical flows in this case, however, are displaced poleward of the open-closed field line boundary, and are reversed in sense, such that the field-aligned currents are also reversed. For both cases of northward and southward IMF we have also for the first time included the effects associated with the IMF By effect. We also include the modulation introduced by the structured nature of the solar wind and IMF at Saturn's orbit by developing "slow" and "fast" flow models corresponding to intermediate and high strength IMF respectively. We then consider the conditions under which the plasma populations appropriate to either sub-solar reconnection or high-latitude lobe reconnection can carry the currents indicated. We have estimated the field-aligned voltages required, the resulting precipitating particle energy fluxes, and the consequent auroral output. Overall our model of pulsed reconnection under conditions of northwards and southwards IMF, and for varying orientations of IMF By, is found to produce a range of UV emission intensities and geometries which is in good agreement with the data presented by Gérard et al. (2004). The recent HST-Cassini solar wind campaign provides a unique opportunity to test the theoretical ideas presented here.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-18 ◽  
Author(s):  
M. Díaz-Michelena ◽  
R. Sanz ◽  
M. F. Cerdán ◽  
A. B. Fernández

Abstract. MOURA instrument is a three-axis magnetometer and gradiometer designed and developed for Mars MetNet Precursor mission. The initial scientific goal of the instrument is to measure the local magnetic field in the surroundings of the lander i.e. to characterize the magnetic environment generated by the remanent magnetization of the crust and the superimposed daily variations of the field produced either by the solar wind incidence or by the thermomagnetic variations. Therefore, the qualification model (QM) will be tested in representative scenarios like magnetic surveys on terrestrial analogues of Mars and monitoring solar events, with the aim to achieve some experience prior to the arrival to Mars. In this work, we present a practical first approach for calibration of the instrument in the laboratory; a finer correction after the comparison of MOURA data with those of a reference magnetometer located in San Pablo de los Montes (SPT) INTERMAGNET Observatory; and a comparative recording of a geomagnetic storm as a demonstration of the compliance of the instrument capabilities with the scientific objectives.


2000 ◽  
Vol 7 (3/4) ◽  
pp. 191-200 ◽  
Author(s):  
K. Sperveslage ◽  
F. M. Neubauer ◽  
K. Baumgärtel ◽  
N. F. Ness

Abstract. Magnetic holes (MHs) are depressions of the magnetic field magnitude. Turner et al. (1977) identified the first MHs in the solar wind and determined an occurrence rate of 1.5 MHs/d. Winterhalter et al. (1994) developed an automatic identification criterion to search for MHs in Ulysses data in the solar wind between 1 AU and 5.4 AU. We adopt their criterion to expand the search to the heliocentric distances down to 0.3 AU using data from Helios 1 and 2 and up to 17 AU using data from Voyager 2. We relate our observations to two theoretical approaches which describe the so-called linear MHs in which the magnetic vector varies in magnitude rather than direction. Therefore we focus on such linear MHs with a directional change less than 10º. With our observations of about 850 MHs we present the following results: Approximately 30% of all the identified MHs are linear. The maximum angle between the initial magnetic field vector and any vector inside the MH is 20º in average and shows a weak relation to the depth of the MHs. The angle between the initial magnetic field and the minimum variance direction of those structures is large and very probably close to 90º. The MHs are placed in a high β environment even though the average solar wind shows a smaller β. The widths decrease from about 50 proton inertial length in a region between 0.3 AU and 0.4 AU heliocentric distance to about 15 proton inertial length at distances larger than 10 AU. This quantity is correlated with the β of the MH environments with respect to the heliocentric distance. There is a clear preference for the occurrence of depressions instead of compressions. We discuss these results with regard to the main theories of MHs, the mirror instability and the alternative soliton approach. Although our observational results are more consistent with the soliton theory we favour a combination of both. MHs might be the remnants of initial mirror mode structures which can be described as solitons during the main part of their lifetime.


2021 ◽  
Author(s):  
Alfredo Micera ◽  
Andrei Zhukov ◽  
Rodrigo A. López ◽  
Maria Elena Innocenti ◽  
Marian Lazar ◽  
...  

<p>Electron velocity distribution functions, initially composed of core and strahl populations as typically encountered in the near-Sun solar wind and as recently observed by Parker Solar Probe, have been modeled via fully kinetic Particle-In-Cell simulations. It has been demonstrated that, as a consequence of the evolution of the electron velocity distribution function, two branches of the whistler heat flux instability can be excited, which can drive whistler waves propagating in the direction parallel or oblique to the background magnetic field. First, the strahl undergoes pitch-angle scattering with oblique whistler waves, which provokes the reduction of the strahl drift velocity and the simultaneous broadening of its pitch angle distribution. Moreover, the interaction with the oblique whistler waves results in the scattering towards higher perpendicular velocities of resonant strahl electrons and in the appearance of a suprathermal halo population which, at higher energies, deviates from the Maxwellian distribution. Later on, the excited whistler waves shift towards smaller angles of propagation and secondary scattering processes with quasi-parallel whistler waves lead to a redistribution of the scattered particles into a more symmetric halo. All processes are accompanied by a significant decrease of the heat flux carried by the strahl population along the magnetic field direction, although the strongest heat flux rate decrease is simultaneous with the propagation of the oblique whistler waves.</p>


Sign in / Sign up

Export Citation Format

Share Document