scholarly journals The chemical evolution of galaxy clusters: Dissecting the iron mass budget of the intracluster medium

2020 ◽  
Vol 637 ◽  
pp. A58 ◽  
Author(s):  
Ang Liu ◽  
Paolo Tozzi ◽  
Stefano Ettori ◽  
Sabrina De Grandi ◽  
Fabio Gastaldello ◽  
...  

Aims. We study the chemical evolution of galaxy clusters by measuring the iron mass in the ICM after dissecting the abundance profiles into different components. Methods. We used Chandra archival observations of 186 morphologically regular clusters in the redshift range of [0.04, 1.07]. For each cluster, we computed the azimuthally averaged iron abundance and gas density profiles. In particular, our aim is to identify a central peak in the iron distribution, which is associated with the central galaxy, and an approximately constant plateau reaching the largest observed radii, which is possibly associated with early enrichment that occurred before or shortly after achieving virialization within the cluster. We were able to firmly identify two components in the iron distribution in a significant fraction of the sample simply by relying on the fit of the iron abundance profile. From the abundance and ICM density profiles, we computed the iron mass included in the iron peak and iron plateau, and the gas mass-weighted iron abundance of the ICM out to an extraction radius of 0.4r500 and to r500 by extending the abundance profile as a constant. Results. We find that the iron plateau shows no evolution with redshift. On the other hand, we find a marginal (< 2σ c.l.) decrease with redshift in the iron mass included in the iron peak rescaled by the gas mass. We measure that the fraction of iron peak mass is typically a few percent (∼1%) of the total iron mass within r500. Therefore, since the total iron mass budget is dominated by the plateau, we find consistently that the global gas mass-weighted iron abundance does not evolve significantly across our sample. We were also able to reproduce past claims of evolution in the global iron abundance, which turn out to be due to the use of cluster samples with different selection methods combined with the use of emission-weighted, instead of gas mass-weighted, abundance values. Finally, while the intrinsic scatter in the iron plateau mass is consistent with zero, the iron peak mass exhibits a large scatter, in line with the fact that the peak is produced after the virialization of the halo and depends on the formation history of the hosting cool core and the strength of the associated feedback processes. Conclusions. We conclude that only a spatially resolved approach can resolve the issue of iron abundance evolution in the ICM, reconciling the contradictory results obtained in the last ten years. Evolutionary effects below z ∼ 1 are marginally measurable with present-day data, while at z >  1 the constraints are severely limited by poor knowledge of the high-z cluster population. The path towards a full and comprehensive chemical history of the ICM requires the application of high angular resolution X-ray bolometers and a dramatic increase in the number of faint, extended X-ray sources.

2019 ◽  
Vol 629 ◽  
pp. A31 ◽  
Author(s):  
I. Urdampilleta ◽  
F. Mernier ◽  
J. S. Kaastra ◽  
A. Simionescu ◽  
J. de Plaa ◽  
...  

We present XMM-Newton/EPIC observations of six merging galaxy clusters and study the distributions of their temperature, iron (Fe) abundance and pseudo-entropy along the merging axis. For the first time, we focused simultaneously, and in a comprehensive way, on the chemical and thermodynamic properties of the newly collided intra cluster medium (ICM). The Fe distribution of these clusters along the merging axis is found to be in good agreement with the azimuthally-averaged Fe abundance profile in typical non-cool-core clusters out to r500. In addition to showing a moderate central abundance peak, though less pronounced than in relaxed systems, the Fe abundance flattens at large radii towards ∼0.2−0.3 Z⊙. Although this shallow metal distribution is in line with the idea that disturbed, non-cool-core clusters originate from the merging of relaxed, cool-core clusters, we find that in some cases, remnants of metal-rich and low entropy cool cores can persist after major mergers. While we obtain a mild anti-correlation between the Fe abundance and the pseudo-entropy in the (lower entropy, K = 200−500 keV cm2) inner regions, no clear correlation is found at (higher entropy, K = 500−2300 keV cm2) outer radii. The apparent spatial abundance uniformity that we find at large radii is difficult to explain through an efficient mixing of freshly injected metals, particularly in systems for which the time since the merger is short. Instead, our results provide important additional evidence in favour of the early enrichment scenario in which the bulk of the metals are released outside galaxies at z >  2−3, and extend it from cool-core and (moderate) non-cool-core clusters to a few of the most disturbed merging clusters as well. These results constitute a first step toward a deeper understanding of the chemical history of merging clusters.


2014 ◽  
Vol 58 (9) ◽  
pp. 587-610 ◽  
Author(s):  
Yu. V. Babyk ◽  
A. Del Popolo ◽  
I. B. Vavilova

Author(s):  
Anthony M Flores ◽  
Adam B Mantz ◽  
Steven W Allen ◽  
R Glenn Morris ◽  
Rebecca E A Canning ◽  
...  

Abstract We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts 1.05 &lt; z &lt; 1.71, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev-Zel’dovich (SZ) effect surveys, and observed with both the XMM-Newton and Chandra satellites. For each cluster, a precise gas mass profile was extracted, from which the value of r500 could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, r &lt; 0.3r500 and 0.3 &lt; r/r500 &lt; 1.0. For the outer bin, the combined measurement for all ten clusters, Z/Z⊙ = 0.21 ± 0.09, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 Solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power law model of the form Z∝(1 + z)γ, we measure a slope $\gamma = -0.5^{+0.4}_{-0.3}$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2.


2004 ◽  
Vol 220 ◽  
pp. 149-158 ◽  
Author(s):  
David A. Buote

X-ray observations with Chandra and XMM are providing valuable new measurements of the dark matter content of elliptical galaxies and galaxy clusters. I review constraints on the radial density profiles and ellipticities of the dark matter in these systems (with an emphasis on clusters) obtained from recent X-ray observations and discuss their implications, especially for the self-interacting dark matter model.


1974 ◽  
Vol 58 ◽  
pp. 141-156
Author(s):  
Manuel Peimbert

A general review is given of chemical abundance determinations; particular emphasis is given to abundances of galactic and extragalactic metal-poor objects since presumably they represent the abundances of the primeval material from which our Galaxy was formed. The following results are stressed: (a) most of the helium present in the galaxies of the local group as well as in other galaxies was produced before these objects were formed, (b) the heavy elements were produced mainly as the result of stellar evolution, (c) there is a chemical abundance gradient in our Galaxy and, by analogy with other galaxies, it is expected to be steeper near the nucleus, (d) the carbon and oxygen content of our Galaxy increased at a rate different from the metals, reaching their present abundance earlier than the other heavy elements, and (e) the increase of the iron abundance in the disk of our Galaxy with time has been small while that of carbon is negligible; furthermore, as a group the super-metal-rich stars correspond to the old disk population. Several models of galactic chemical evolution are reviewed.


Author(s):  
M. Vallet-Regí ◽  
M. Parras ◽  
J.M. González-Calbet ◽  
J.C. Grenier

BaFeO3-y compositions (0.35<y<0.50) have been investigated by means of electron diffraction and microscopy to resolve contradictory results from powder X-ray diffraction data.The samples were obtained by annealing BaFeO2.56 for 48 h. in the temperature range from 980°C to 1050°C . Total iron and barium in the samples were determined using chemical analysis and gravimetric methods, respectively.In the BaFeO3-y system, according to the electron diffraction and microscopy results, the nonstoichiometry is accommodated in different ways as a function of the composition (y):In the domain between BaFeO2.5+δBaFeO2.54, compositional variations are accommodated through the formation of microdomains. Fig. la shows the ED pattern of the BaFeO2.52 material along thezone axis. The corresponding electron micrograph is seen in Fig. 1b. Several domains corresponding to the monoclinic BaFeO2.50 phase, intergrow with domains of the orthorhombic phase. According to that, the ED pattern of Fig. 1a, can be interpreted as formed by the superposition of three types of diffraction maxima : Very strong spots corresponding to a cubic perovskite, a set of maxima due to the superposition of three domains of the monoclinic phase along [100]m and a series of maxima corresponding to three domains corresponding to the orthorhombic phase along the [100]o.


1970 ◽  
Vol 24 (2) ◽  
pp. 75-78
Author(s):  
MA Hayee ◽  
QD Mohammad ◽  
H Rahman ◽  
M Hakim ◽  
SM Kibria

A 42-year-old female presented in Neurology Department of Sir Salimullah Medical College with gradually worsening difficulty in talking and eating for the last four months. Examination revealed dystonic tongue, macerated lips due to continuous drooling of saliva and aspirated lungs. She had no history of taking antiparkinsonian, neuroleptics or any other drugs causing dystonia. Chest X-ray revealed aspiration pneumonia corrected later by antibiotics. She was treated with botulinum toxin type-A. Twenty units of toxin was injected in six sites of the tongue. The dystonic tongue became normal by 24 hours. Subsequent 16 weeks follow up showed very good result and the patient now can talk and eat normally. (J Bangladesh Coll Phys Surg 2006; 24: 75-78)


Author(s):  
A. R. Lang

AbstractX-ray topography provides a non-destructive method of mapping point-by-point variations in orientation and reflecting power within crystals. The discovery, made by several workers independently, that in nearly perfect crystals it was possible to detect individual dislocations by X-ray diffraction contrast started an epoch of rapid exploitation of X-ray topography as a new, general method for assessing crystal perfection. Another discovery, that of X-ray Pendellösung, led to important theoretical developments in X-ray diffraction theory and to a new and precise method for measuring structure factors on an absolute scale. Other highlights picked out for mention are studies of Frank-Read dislocation sources, the discovery of long dislocation helices and lines of coaxial dislocation loops in aluminium, of internal magnetic domain structures in Fe-3 wt.% Si, and of stacking faults in silicon and natural diamonds.


2007 ◽  
Vol 472 (3) ◽  
pp. 739-748 ◽  
Author(s):  
M. Branchesi ◽  
I. M. Gioia ◽  
C. Fanti ◽  
R. Fanti
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document