scholarly journals Evolution of photospheric flows under an erupting filament in the quiet-Sun region

2020 ◽  
Vol 636 ◽  
pp. A102
Author(s):  
Jiří Wollmann ◽  
Michal Švanda ◽  
David Korda ◽  
Thierry Roudier

Context. We studied the dynamics of the solar atmosphere in the region of a large quiet-Sun filament, which erupted on 21 October 2010. The filament eruption started at its northern end and disappeared from the Hα line-core filtergrams line within a few hours. The very fast motions of the northern leg were recorded in ultraviolet light by the Atmospheric Imaging Assembly (AIA) imager. Aims. We aim to study a wide range of available datasets describing the dynamics of the solar atmosphere for five days around the filament eruption. This interval covers three days of the filament evolution, one day before the filament growth and one day after the eruption. We search for possible triggers that lead to the eruption of the filament. Methods. The surface velocity field in the region of the filament were measured by means of time–distance helioseismology and coherent structure tracking. The apparent velocities in the higher atmosphere were estimated by tracking the features in the 30.4 nm AIA observations. To capture the evolution of the magnetic field, we extrapolated the photospheric line-of-sight magnetograms and also computed the decay index of the magnetic field. Results. We found that photospheric velocity fields showed some peculiarities. Before the filament activation, we observed a temporal increase of the converging flows towards the filament’s spine. In addition, the mean squared velocity increased temporarily before the activation and peaked just before it, followed by a steep decrease. We further see an increase in the average shear of the zonal flow component in the filament’s region, followed by a steep decrease. The photospheric line-of-sight magnetic field shows a persistent increase of induction eastward from the filament spine. The decay index of the magnetic field at heights around 10 Mm shows a value larger than critical one at the connecting point of the northern filament end. The value of the decay index increases monotonically there until the filament activation. Then, it decreased sharply.

2018 ◽  
Vol 616 ◽  
pp. A46 ◽  
Author(s):  
A. Pastor Yabar ◽  
M. J. Martínez González ◽  
M. Collados

The magnetism at the poles is similar to that of the quiet Sun in the sense that no active regions are present there. However, the polar quiet Sun is somewhat different from that at the activity belt as it has a global polarity that is clearly modulated by the solar cycle. We study the polar magnetism near an activity maximum when these regions change their polarity, from which it is expected that its magnetism should be less affected by the global field. To fully characterise the magnetic field vector, we use deep full Stokes polarimetric observations of the 15 648.5 and 15 652.8 Å FeI lines. We observe the north pole as well as a quiet region at disc centre to compare their field distributions. In order to calibrate the projection effects, we observe an additional quiet region at the east limb. We find that the two limb datasets share similar magnetic field vector distributions. This means that close to a maximum, the poles look like typical limb, quiet-Sun regions. However, the magnetic field distributions at the limbs are different from the distribution inferred at disc centre. At the limbs, we infer a new population of magnetic fields with relatively strong intensities (~600−800 G), inclined by ~30° with respect to the line of sight, and with an azimuth aligned with the solar disc radial direction. This line-of-sight orientation interpreted as a single magnetic field gives rise to non-vertical fields in the local reference frame and aligned towards disc centre. This peculiar topology is very unlikely for such strong fields according to theoretical considerations. We propose that this new population at the limbs is due to the observation of unresolved magnetic loops as seen close to the limb. These loops have typical granular sizes as measured in the disc centre. At the limbs, where the spatial resolution decreases, we observe them spatially unresolved, which explains the new population of magnetic fields that is inferred. This is the first (indirect) evidence of small-scale magnetic loops outside the disc centre and would imply that these small-scale structures are ubiquitous on the entire solar surface. This result has profound implications for the energetics not only of the photosphere, but also of the outer layers since these loops have been reported to reach the chromosphere and the low corona.


1993 ◽  
Vol 138 ◽  
pp. 305-309
Author(s):  
Marco Landolfi ◽  
Egidio Landi Degl’Innocenti ◽  
Maurizio Landi Degl’Innocenti ◽  
Jean-Louis Leroy ◽  
Stefano Bagnulo

AbstractBroadband linear polarization in the spectra of Ap stars is believed to be due to differential saturation between σ and π Zeeman components in spectral lines. This mechanism has been known for a long time to be the main agent of a similar phenomenon observed in sunspots. Since this phenomenon has been carefully calibrated in the solar case, it can be confidently used to deduce the magnetic field of Ap stars.Given the magnetic configuration of a rotating star, it is possible to deduce the broadband polarization at any phase. Calculations performed for the oblique dipole model show that the resulting polarization diagrams are very sensitive to the values of i (the angle between the rotation axis and the line of sight) and β (the angle between the rotation and magnetic axes). The dependence on i and β is such that the four-fold ambiguity typical of the circular polarization observations ((i,β), (β,i), (π-i,π-β), (π-β,π-i)) can be removed.


Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter discusses how there are four general factors that contribute to the Sun's potential role in variations in the Earth's climate. First, the fusion processes in the solar core determine the solar luminosity and hence the base level of radiation impinging on the Earth. Second, the presence of the solar magnetic field leads to radiation at ultraviolet (UV), extreme ultraviolet (EUV), and X-ray wavelengths which can affect certain layers of the atmosphere. Third, the variability of the magnetic field over a 22-year cycle leads to significant changes in the radiative output at some wavelengths. Finally, the interplanetary manifestation of the outer solar atmosphere (the solar wind) interacts with the terrestrial magnetic field, leading to effects commonly called space weather.


2019 ◽  
Vol 631 ◽  
pp. L11 ◽  
Author(s):  
R. Skalidis ◽  
V. Pelgrims

It has not been shown so far whether the diffuse Galactic polarized emission at frequencies relevant for cosmic microwave background (CMB) studies originates from nearby or more distant regions of our Galaxy. This questions previous attempts that have been made to constrain magnetic field models at local and large scales. The scope of this work is to investigate and quantify the contribution of the dusty and magnetized local interstellar medium to the observed emission that is polarized by thermal dust. We used stars as distance candles and probed the line-of-sight submillimeter polarization properties by comparing the emission that is polarized by thermal dust at submillimeter wavelengths and the optical polarization caused by starlight. We provide statistically robust evidence that at high Galactic latitudes (|b| ≥ 60°), the 353 GHz polarized sky as observed by Planck is dominated by a close-by magnetized structure that extends between 200 and 300 pc and coincides with the shell of the Local Bubble. Our result will assist modeling the magnetic field of the Local Bubble and characterizing the CMB Galactic foregrounds.


2019 ◽  
Vol 629 ◽  
pp. A22 ◽  
Author(s):  
Stefan J. Hofmeister ◽  
Dominik Utz ◽  
Stephan G. Heinemann ◽  
Astrid Veronig ◽  
Manuela Temmer

In this study, we investigate in detail the photospheric magnetic structure of 98 coronal holes using line-of-sight magnetograms of SDO/HMI, and for a subset of 42 coronal holes using HINODE/SOT G-band filtergrams. We divided the magnetic field maps into magnetic elements and quiet coronal hole regions by applying a threshold at ±25 G. We find that the number of magnetic bright points in magnetic elements is well correlated with the area of the magnetic elements (cc = 0.83 ± 0.01). Further, the magnetic flux of the individual magnetic elements inside coronal holes is related to their area by a power law with an exponent of 1.261 ± 0.004 (cc = 0.984 ± 0.001). Relating the magnetic elements to the overall structure of coronal holes, we find that on average (69 ± 8)% of the overall unbalanced magnetic flux of the coronal holes arises from long-lived magnetic elements with lifetimes > 40 h. About (22 ± 4)% of the unbalanced magnetic flux arises from a very weak background magnetic field in the quiet coronal hole regions with a mean magnetic field density of about 0.2−1.2 G. This background magnetic field is correlated to the flux of the magnetic elements with lifetimes of > 40 h (cc = 0.88 ± 0.02). The remaining flux arises from magnetic elements with lifetimes < 40 h. By relating the properties of the magnetic elements to the overall properties of the coronal holes, we find that the unbalanced magnetic flux of the coronal holes is completely determined by the total area that the long-lived magnetic elements cover (cc = 0.994 ± 0.001).


2019 ◽  
Vol 628 ◽  
pp. A1 ◽  
Author(s):  
J. D. Landstreet ◽  
S. Bagnulo

We report the discovery of a new magnetic DA white dwarf (WD), WD 0011 − 721, which is located within the very important 20 pc volume-limited sample of the closest WDs to the Sun. This star has a mean field modulus ⟨|B|⟩ of 343 kG, and from the polarisation signal we deduce a line-of-sight field component of 75 kG. The magnetic field is sufficiently weak to have escaped detection in classification spectra. We then present a preliminary exploration of the data concerning the frequency of such fields among WDs with hydrogen-rich atmospheres (DA stars). We find that 20 ± 5% of the DA WDs in this volume have magnetic fields, mostly weaker than 1 MG. Unlike the slow field decay found among the magnetic Bp stars of the upper main sequence, the WDs in this sample show no evidence of magnetic field or flux changes over several Gyr.


1968 ◽  
Vol 35 ◽  
pp. 131-133
Author(s):  
M. Kopecký ◽  
G. V. Kuklin

In some recent papers the interdependence of the gas and magnetic-field motions in the solar atmosphere was considered. Some results indicate the occurrence of gas motion along the magnetic-field lines combined with motion of the field line, but sometimes we have to assume an obvious gas motion across the magnetic-field lines. As one of the possible mechanisms explaining this fact the anomalous plasma diffusion may be proposed.


2016 ◽  
Vol 12 (S327) ◽  
pp. 77-81
Author(s):  
S. Candelaresi ◽  
D. I. Pontin ◽  
G. Hornig

AbstractUsing a magnetic carpet as model for the near surface solar magnetic field we study its effects on the propagation of energy injectected by photospheric footpoint motions. Such a magnetic carpet structure is topologically highly non-trivial and with its magnetic nulls exhibits qualitatively different behavior than simpler magnetic fields. We show that the presence of magnetic fields connecting back to the photosphere inhibits the propagation of energy into higher layers of the solar atmosphere, like the solar corona. By applying certain types of footpoint motions the magnetic field topology is is greatly reduced through magnetic field reconnection which facilitates the propagation of energy and disturbances from the photosphere.


1971 ◽  
Vol 43 ◽  
pp. 595-608 ◽  
Author(s):  
Kenneth H. Schatten

The structure of the magnetic field of the active solar corona is discussed with reference to optical and radio observations of the solar atmosphere. Eclipse observations provide evidence of fine scale structures in the solar atmosphere that appear to relate to the coronal magnetic field. The coronal magnetic field used for comparison is that field calculated from potential theory: the influence of solar activity upon the potential theory field is discussed with reference to observations of the Faraday rotation of a microwave signal from Pioneer 6 as it was occulted by the solar atmosphere. Evidence has been found suggesting the existence of expanding magnetic bottles located at 10 R⊙ above flaring active regions. The dynamics of these events is discussed. It is further suggested that these magnetic bottles are an important component in the solar corona.


Sign in / Sign up

Export Citation Format

Share Document