disc centre
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 3)

2021 ◽  
Vol 928 ◽  
Author(s):  
Utkarsh Jain ◽  
Patricia Vega-Martínez ◽  
Devaraj van der Meer

The presence of ambient air in liquid-slamming events plays a crucial role in influencing the shape of the liquid surface prior to the impact, and the distribution of loads created upon impact. We study the effect of trapped air on impact loads in a simplified geometry, by slamming a horizontal flat disc onto a stationary water bath at a well-controlled velocity. We show how air trapping influences pressure peaks at different radial locations on the disc, how the pressure impulses are affected and how local pressure impulses differ from those obtained from area-integrated (force) impulses at impact. More specifically, we find that the air layer causes a gradual buildup of the load before the peak value is reached, and show that this buildup follows inertial scaling. Further, the same localised pressure impulse at the disc centre is found to be lower than the corresponding (area-integrated) force impulse on the entire disc. While the (area-integrated) force impulses are close to the classical result of Batchelor (An Introduction to Fluid Dynamics, Cambridge University Press, 1967, § 6.10) and Glasheen & McMahon (Phys. Fluids, vol. 8, issue 8, 1996, pp. 2078–2083), the localised pressure impulses at the disc centre, where the trapped air layer is at its thickest, lie closer to the theoretical estimation by Peters et al. (J. Fluid Mech., vol. 724, 2013, pp. 553–580) for an air-cushioned impact.


2020 ◽  
Vol 635 ◽  
pp. A210 ◽  
Author(s):  
A. Pastor Yabar ◽  
M. J. Martínez González ◽  
M. Collados

Aims. We aim to characterise the magnetism of a large fraction of the north polar region close to a maximum of activity, when the polar regions are reversing their dominant polarity. Methods. We make use of full spectropolarimetric data from the CRisp Imaging Spectro-Polarimeter installed at the Swedish Solar Telescope. The data consist of a photospheric spectral line, which is used to infer the various physical parameters of different quiet Sun regions by means of the solution of the radiative transfer equation. We focus our analysis on the properties found for the north polar region and their comparison to the same analysis applied to data taken at disc centre and low-latitude quiet Sun regions for reference. We also analyse the spatial distribution of magnetic structures throughout the north polar region. Results. We find that the physical properties of the polar region (line-of-sight velocity, magnetic flux, magnetic inclination and magnetic azimuth) are compatible with those found for the quiet Sun at disc centre and are similar to the ones found at low latitudes close to the limb. Specifically, the polar region magnetism presents no specific features. The structures for which the transformation from a line-of-sight to a local reference frame was possible harbour large magnetic fluxes (>1017 Mx) and are in polarity imbalance with a dominant positive polarity, the largest ones (>1019 Mx) being located below 73° latitude.


2020 ◽  
Vol 494 (1) ◽  
pp. L11-L16 ◽  
Author(s):  
Michael S Petersen ◽  
Jorge Peñarrubia

ABSTRACT We present the results of N-body models of the Milky Way and Large Magellanic Cloud system and study the kinematic reflex motion in the stellar halo owing to the barycentre displacement of the disc. In agreement with previous studies, we find that the Milky Way disc may be moving at 40 $\, {\rm km~s^{-1}}$ relative to the barycentre prior to the Large Magellanic Cloud infall. The resulting reflex motion is visible in tangential velocities of the stellar halo as a simple dipole. The signal is strongest for stars with long dynamical times, identifiable in position-velocity data as stars with large apocentres, whose dynamical memory is still well represented by the unperturbed Milky Way potential. The signal varies across the sky depending on the stellar tracer and may be up to the same magnitude as the velocity of the disc centre of mass, making reflex motion a source of bias for Milky Way potential determinations based on the modelling of stellar streams and/or smooth halo tracers such as blue horizontal branch or RR Lyrae stars.


2020 ◽  
Vol 633 ◽  
pp. A60
Author(s):  
P. H. Keys ◽  
A. Reid ◽  
M. Mathioudakis ◽  
S. Shelyag ◽  
V. M. J. Henriques ◽  
...  

Context. Magnetic bright points (MBPs) are dynamic, small-scale magnetic elements often found with field strengths of the order of a kilogauss within intergranular lanes in the photosphere. Aims. Here we study the evolution of various physical properties inferred from inverting high-resolution full Stokes spectropolarimetry data obtained from ground-based observations of the quiet Sun at disc centre. Methods. Using automated feature-tracking algorithms, we studied 300 MBPs and analysed their temporal evolution as they evolved to kilogauss field strengths. These properties were inferred using both the NICOLE and SIR Stokes inversion codes. We employ similar techniques to study radiative magnetohydrodynamical simulations for comparison with our observations. Results. Evidence was found for fast (∼30−100 s) amplification of magnetic field strength (by a factor of 2 on average) in MBPs during their evolution in our observations. Similar evidence for the amplification of fields is seen in our simulated data. Conclusions. Several reasons for the amplifications were established, namely, strong downflows preceding the amplification (convective collapse), compression due to granular expansion and mergers with neighbouring MBPs. Similar amplification of the fields and interpretations were found in our simulations, as well as amplification due to vorticity. Such a fast amplification will have implications for a wide array of topics related to small-scale fields in the lower atmosphere, particularly with regard to propagating wave phenomena in MBPs.


2019 ◽  
Vol 492 (1) ◽  
pp. 1154-1163 ◽  
Author(s):  
Raymundo Baptista ◽  
Eduardo Wojcikiewicz

ABSTRACT We report the analysis of time-series of infrared JHKs photometry of the dwarf nova  V2051 Oph in quiescence with eclipse mapping techniques to investigate structures and the spectrum of its accretion disc. The light curves after removal of the ellipsoidal variations caused by the mass-donor star show a double-wave modulation signalling the presence of two asymmetric light sources in the accretion disc. Eclipse maps reveal two spiral arms on top of the disc emission, one at $R_1= 0.28\pm 0.02 \, R_\mathrm{L1}$ and the other at $R_2= 0.42\pm 0.02 \, R_\mathrm{L1}$ (where RL1 is the distance from disc centre to the inner Lagrangian point), which are seen face-on at binary phases consistent with the maxima of the double-wave modulation. The wide open angle inferred for the spiral arms (θs = 21° ± 4°) suggests the quiescent accretion disc of V2051 Oph has high viscosity. The accretion disc is hot and optically thin in its inner regions ($T_\mathrm{gas}\sim 10\!-\!12 \times 10^3\, \mathrm{ K}$ and surface densities $\sim 10^{-3}\text{ to }10^{-2}\, \mathrm{ g}\, \mathrm{ cm}^{-2}$), and becomes cool and opaque in its outer regions.


2019 ◽  
Vol 104 (8) ◽  
pp. 1120-1124
Author(s):  
Aiko Iwase ◽  
Shoichi Sawaguchi ◽  
Kenji Tanaka ◽  
Tae Tsutsumi ◽  
Makoto Araie

AimTo study relationships between reported risk factors for glaucoma and neuroretinal rim area in normal eyes.MethodsThe Kumejima study participants, 3762 of the 4632 eligible Kumejima residents 40 years and older, underwent a detailed ocular examination including sequential disc stereo photography. In a randomly chosen eye of a subject whose both eyes met the inclusion criteria, fundus photographs of 2474 ophthalmologically normal eyes of the 2474 subjects were analysed by computer-assisted planimetry to measure the disc, rim and β-peripapillary atrophy (PPA) areas. The rim was divided into the superior and inferior halves by a line connecting the fovea and disc centre.ResultsThe disc, superior and inferior halves rim and β-PPA areas averaged 2.53±0.50 (SD), 0.82±0.15, 0.84±0.16 and 0.45±0.66 mm2. After adjustment for other systemic and ocular factors including age, disc and β-PPA areas, disc–fovea distance (p=0.013, 0.016) correlated positively and intraocular pressure (IOP) (p=0.004, 0.006) and axial length (AL) (p<0.000, 0.004) negatively with the superior and inferior halves rim area, respectively; central corneal thickness (CCT) (p=0.008) and mean blood pressure (mBP) (p=0.020) correlated positively and male gender (p=0.012) negatively only with the superior half rims.ConclusionsBesides previously reported risk factors for glaucoma such as age or IOP, thinner CCT, lower mBP and male gender were newly found to significantly correlate with smaller rim area only in the superior half disc, and a greater disc–fovea distance with greater superior and inferior half rim areas in normal adult eyes.


2019 ◽  
Vol 630 ◽  
pp. A86 ◽  
Author(s):  
D. Buehler ◽  
A. Lagg ◽  
M. van Noort ◽  
S. K. Solanki

Aims. We compare the properties of kG magnetic structures in the solar network and in active region plage at high spatial resolution. Methods. Our analysis used six SP scans of the solar disc centre aboard Hinode SOT and inverted the obtained spectra of the photospheric 6302 Å line pair using the 2D SPINOR code. Results. Photospheric magnetic field concentrations in network and plage areas are on average 1.5 kG strong with inclinations of 10° −20°, and have < 400 m s−1 internal and 2−3 km s−1 external downflows. At the disc centre, the continuum intensity of magnetic field concentrations in the network are on average 10% brighter than the mean quiet Sun, whilst their plage counterparts are 3% darker. A more detailed analysis revealed that all sizes of individual kG patches in the network have 150 G higher field strengths on average, 5% higher continuum contrasts, and 800 m s−1 faster surrounding downflows than similarly sized patches in the plage. The speed of the surrounding downflows also correlates with the patch area, and patches containing pores can produce supersonic flows exceeding 11 km s−1 in individual pixels. Furthermore, the magnetic canopies of kG patches are on average 9° more horizontal in the plage compared to the network. Conclusions. Most of the differences between the network and plage are due to their different patch size distributions, but the intrinsic differences between similarly sized patches likely results from the modification of the convection photospheric convection with increasing amounts of magnetic flux.


2019 ◽  
Vol 488 (3) ◽  
pp. 3076-3088 ◽  
Author(s):  
Abraham C-L Chian ◽  
Suzana S A Silva ◽  
Erico L Rempel ◽  
Milan Gošić ◽  
Luis R Bellot Rubio ◽  
...  

ABSTRACT The quiet Sun exhibits a wealth of magnetic activities that are fundamental for our understanding of solar magnetism. The magnetic fields in the quiet Sun are observed to evolve coherently, interacting with each other to form prominent structures as they are advected by photospheric flows. The aim of this paper is to study supergranular turbulence by detecting Lagrangian coherent structures (LCS) based on the horizontal velocity fields derived from Hinode intensity images at disc centre of the quiet Sun on 2010 November 2. LCS act as transport barriers and are responsible for attracting/repelling the fluid elements and swirling motions in a finite time. Repelling/attracting LCS are found by computing the forward/backward finite-time Lyapunov exponent (FTLE), and vortices are found by the Lagrangian-averaged vorticity deviation method. We show that the Lagrangian centres and boundaries of supergranular cells are given by the local maximum of the forward and backward FTLE, respectively. The attracting LCS expose the location of the sinks of photospheric flows at supergranular junctions, whereas the repelling LCS interconnect the Lagrangian centres of neighbouring supergranular cells. Lagrangian transport barriers are found within a supergranular cell and from one cell to other cells, which play a key role in the dynamics of internetwork and network magnetic elements. Such barriers favour the formation of vortices in supergranular junctions. In particular, we show that the magnetic field distribution in the quiet Sun is determined by the combined action of attracting/repelling LCS and vortices.


2019 ◽  
Vol 626 ◽  
pp. A4 ◽  
Author(s):  
Gregal J. M. Vissers ◽  
Luc H. M. Rouppe van der Voort ◽  
Robert J. Rutten

Ellerman bombs are transient brightenings in the wings of Hα 6563 Å that pinpoint photospheric sites of magnetic reconnection in solar active regions. Their partial visibility in the 1600 Å and 1700 Å continua registered routinely by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) offers a unique opportunity to inventory such magnetic-field disruptions throughout the AIA database if a reliable recipe for their detection can be formulated. This is done here. We have improved and applied an Hα Ellerman bomb detection code to ten data sets spanning viewing angles from solar disc centre to the limb. They combine high-quality Hα imaging spectroscopy from the Swedish 1 m Solar Telescope with simultaneous AIA imaging around 1600 Å and 1700 Å. A trial grid of brightness, lifetime and area constraints is imposed on the AIA images to define optimal recovery of the 1735 Ellerman bombs detected in Hα. The best results when optimising simultaneously for recovery fraction and reliability are obtained from 1700 Å images by requiring 5σ brightening above the average 1700 Å nearby quiet-Sun intensity, lifetime above one minute, area of 1–18 AIA pixels. With this recipe 27% of the AIA detections are Hα-detected Ellerman bombs while it recovers 19% of these (of which many are smaller than the AIA resolution). Better yet, among the top 10% AIA 1700 Å detections selected with combined brightness, lifetime and area thresholds as many as 80% are Hα Ellerman bombs. Automated selection of the best 1700 Å candidates therefore opens the entire AIA database for detecting most of the more significant photospheric reconnection events. This proxy is applicable as a flux-dynamics tell-tale in studying any Earth-side solar active region since early 2010 up to the present.


2019 ◽  
Vol 624 ◽  
pp. A65 ◽  
Author(s):  
C. E. Pugh ◽  
A.-M. Broomhall ◽  
V. M. Nakariakov

Context. Quasi-periodic pulsations (QPPs) are a common feature of solar flares, but there has previously been a lack of observational evidence to support any of the theoretical models that might explain the origin of these QPPs. Aims. We aimed to determine if there are any relationships between the QPP period and other properties of the flaring region, using a previously assembled sample of flares with QPPs. If any relationships exist, then these can be compared with scaling laws for the theoretical QPP mechanisms. Methods. To obtain the flaring region properties, we made use of the Atmospheric Imaging Assembly (AIA) 1600 Å and Helioseismic and Magnetic Imager (HMI) data. The flare ribbons are visible in AIA 1600 Å images, and the positive and negative magnetic polarity ribbons can be distinguished and the magnetic properties determined in the HMI magnetograms. The ribbon properties calculated in this study were the ribbon separation distance, area, total unsigned magnetic flux, and average magnetic field strength. Only the flares that occurred within ±60° of the solar disc centre were included, which meant a sample of 20 flares with 22 QPP signals. Results. Positive correlations were found between the QPP period and the ribbon properties. The strongest correlations were with the separation distance and magnetic flux. Because these ribbon properties also correlate with the flare duration and because the relationship between the QPP period and flare duration may be influenced by observational bias, we also made use of simulated data to determine whether artificial correlations were introduced. These simulations show that although QPPs cannot be detected for certain combinations of QPP period and flare duration, this does not introduce an apparent correlation. Conclusions. There is evidence of relationships between the QPP period and flare ribbon properties, and in the future, the derived scaling laws between these properties can be compared to equivalent scaling laws for theoretical QPP mechanisms.


Sign in / Sign up

Export Citation Format

Share Document