scholarly journals Self-scattering in protoplanetary disks with dust settling

2020 ◽  
Vol 640 ◽  
pp. A122
Author(s):  
R. Brunngräber ◽  
S. Wolf

Scattering of re-emitted flux is considered to be at least partially responsible for the observed polarisation in the (sub-)millimetre wavelength range of several protoplanetary disks. Although the degree of polarisation produced by scattering is highly dependent on the dust model, early studies investigating this mechanism relied on the assumption of single grain sizes and simple density distribution of the dust. However, in the dense inner regions where this mechanism is usually most efficient, the existence of dust grains with sizes ranging from nanometres to millimetres has been confirmed. Additionally, the presence of gas forces larger grains to migrate vertically towards the disk midplane, introducing a dust segregation in the vertical direction. Using polarisation radiative transfer simulations, we analyse the dependence of the resulting scattered light polarisation at 350 μm, 850 μm, 1.3 mm, and 2 mm on various parameters describing protoplanetary disks, including the effect of dust grain settling. We find that the different disk parameters change the degree of polarisation mostly by affecting the anisotropy of the radiation field, the optical depth, or both. It is therefore very challenging to deduce certain disk parameter values directly from polarisation measurements alone. However, assuming a high dust albedo, it is possible to trace the transition from optically thick to optically thin disk regions. The degree of polarisation in most of the considered disk configurations is lower than what is found observationally, implying the necessity to revisit models that describe the dust properties and disk structure.

2018 ◽  
Vol 617 ◽  
pp. L7
Author(s):  
A. D. Schneider ◽  
C. P. Dullemond ◽  
B. Bitsch

Context. Vertically hydrostatic protoplanetary disk models are based on the assumption that the main heating source, stellar irradiation, does not vary much with time. However, it is known that accreting young stars are variable sources of radiation. This is particularly evident for outbursting sources such as EX Lupi and FU Orionis stars. Aims. We investigate how such outbursts affect the vertical structure of the outer regions of the protoplanetary disk, in particular their appearance in scattered light at optical and near-infrared wavelengths. Methods. We employ the 3D FARGOCA radiation-hydrodynamics code, in polar coordinates, to compute the time-dependent behavior of the axisymmetric disk structure. The temperature is computed self-consistently and time-dependently from the irradiation flux using a two-stage radiative transfer method: first the direct illumination is computed; then the diffuse radiation is treated with the flux-limited diffusion method. The outbursting inner disk region is not included explicitly. Instead, its luminosity is added to the stellar luminosity and is thus included in the irradiation of the outer disk regions. For time snapshots of interest we insert the density structure into the RADMC-3D radiative transfer code and compute the appearance of the disk at optical/near-infrared wavelengths, where we observe stellar light that is scattered off the surface of the disk. Results. We find that, depending on the amplitude of the outbursts, the vertical structure of the disk can become highly dynamic, featuring circular surface waves of considerable amplitude. These “hills” and “valleys” on the disk’s surface show up in the scattered light images as bright and dark concentric rings. Initially these rings are small and act as standing waves, but they subsequently lead to outward propagating waves, like the waves produced by a stone thrown into a pond. These waves continue long after the actual outburst has died out. Conclusions. Single, periodic, or quasiperiodic outbursts of the innermost regions of protoplanetary disks will necessarily lead to wavy structures on the surface of these disks at all radii. We propose that some of the multi-ringed structures seen in optical/infrared images of several protoplanetary disks may have their origin in outbursts that occurred decades or centuries ago. However, the multiple rings seen at (sub-)millimeter wavelengths in HL Tau and several other disks are not expected to be related to such waves.


2020 ◽  
Vol 495 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Giovanni P Rosotti ◽  
Richard Teague ◽  
Cornelis Dullemond ◽  
Richard A Booth ◽  
Cathie J Clarke

ABSTRACT When imaged at high resolution, many protoplanetary discs show gaps and rings in their dust sub-mm continuum emission profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the underlying gas structures are however unknown. In this paper, we present a method to measure the dust–gas coupling α/St and the width of the gas pressure bumps affecting the dust distribution, applying high-precision techniques to extract the gas rotation curve from emission line data cubes. As a proof of concept, we then apply the method to two discs with prominent substructure, HD 163296 and AS 209. We find that in all cases the gas structures are larger than in the dust, confirming that the rings are pressure traps. Although the grains are sufficiently decoupled from the gas to be radially concentrated, we find that the degree of coupling of the dust is relatively good (α/St ∼ 0.1). We can therefore reject scenarios in which the disc turbulence is very low and the dust has grown significantly. If we further assume that the dust grain sizes are set by turbulent fragmentation, we find high values of the α turbulent parameter (α ∼ 10−2). Alternatively, solutions with smaller turbulence are still compatible with our analysis if another process is limiting grain growth. For HD 163296, recent measurements of the disc mass suggest that this is the case if the grain size is 1 mm. Future constraints on the dust spectral indices will help to discriminate between the two alternatives.


2011 ◽  
Vol 7 (S280) ◽  
pp. 127-137 ◽  
Author(s):  
C. Salyk

AbstractThere remain many fundamental unanswered questions about protoplanetary disks, including how (and if?) they form planets, how mass is transferred through the disk and onto the star, and how they ultimately disperse. Also, a major goal of protoplanetary disk studies is to understand the relationship between disk properties and the physical and chemical properties of planetary systems. IR molecular spectroscopy is a particularly powerful tool for probing the conditions and physical process in protoplanetary disks, which are too small and close to their parent stars to be imaged with ease. I will discuss the suite of infrared molecular transitions observed to date, which highlight the following three techniques of IR spectroscopy. Firstly, line shapes and strengths can be used as tracers of disk physics, including volatile condensation/evaporation, photo-processes, grain growth and turbulence. Secondly, observations of multiple molecular abundances provide constraints for disk chemical models, which may ultimately help explain the great diversity of planetary bodies. Finally, resolved line shapes and spectro-astrometry provide a means to study disk structure on extremely small size scales. Because IR observations are typically sensitive to radii of a few AU or smaller, the processes and structures being probed are relevant to the birth and growth of terrestrial and giant planets. Recent results that I will highlight include the discovery of a multitude of molecules in disks around sun-like stars (including H2O, OH, HCN, C2H2 and CO2), with detection rates that depend on stellar mass, constraints on gas mass and location in transitional disks, detection and characterization of ‘snow lines’, measurements of inner disk rims, and detections of inner disk asymmetries. I will also discuss how IR spectroscopy will remain relevant even with the emergence of facilities such as ALMA, as it allows us to connect the conditions in terrestrial-planet-forming regions with those in the cold outer reaches of disks, and to better construct a comprehensive understanding of the nature of protoplanetary disks.


2018 ◽  
Vol 609 ◽  
pp. A50 ◽  
Author(s):  
C. P. Dullemond ◽  
A. B. T. Penzlin

Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been suggested, including snow lines, dead zones and secular gravitational instabilities in the dust. In this paper we suggest another potential origin. The presence of copious amounts of dust tends to strongly reduce the conductivity of the gas, thereby inhibiting the magneto-rotational instability, and thus reducing the turbulence in the disk. From viscous disk theory it is known that a disk tends to increase its surface density in regions where the viscosity (i.e. turbulence) is low. Local maxima in the gas pressure tend to attract dust through radial drift, increasing the dust content even more. We have investigated mathematically if this could potentially lead to a feedback loop in which a perturbation in the dust surface density could perturb the gas surface density, leading to increased dust drift and thus amplification of the dust perturbation and, as a consequence, the gas perturbation. We find that this is indeed possible, even for moderately small dust grain sizes, which drift less efficiently, but which are more likely to affect the gas ionization degree. We speculate that this instability could be triggered by the small dust population initially, and when the local pressure maxima are strong enough, the larger dust grains get trapped and lead to the familiar ring-like shapes. We also discuss the many uncertainties and limitations of this model.


2021 ◽  
Vol 913 (2) ◽  
pp. 138
Author(s):  
Evan A. Rich ◽  
Richard Teague ◽  
John D. Monnier ◽  
Claire L. Davies ◽  
Arthur Bosman ◽  
...  

2021 ◽  
Vol 34 ◽  
pp. 53-55
Author(s):  
V.V. Nazarenko

The present paper is devoted to small radius accretion disk formation in microquasar CYG X-1. The results show that in the case of the strong wind action on a disk the disk radius is about of 20 ÷ 30 per sent of accretor’s Roche lobe radius (it is about of 0.08 of orbital separation) instead of the standard disk radius equal to 80 ÷ 85 per sent of accretor’s Roche lobe radius (the last magnitude is a disk radius equal to 0.22 of orbital separation). In the present paper we try to resolve the problem that is arising in the case of microquasars when we investigate the accretion disk formation in these objects. Indeed, since the microquasars are the massive close binary systems (MCBS) in which the donor is massive stars of O-B class the strong wind is blowing from these stars. In this case the problem is arising: what is the situation in which an accretion disk in microqausars is formed. By the other words, it means what are the processes and the matter that are responsible for an accretion disk formation in microquasars: is this matter from one-point stream only or a disk is formed from the donor’s wind in essential or one is formed from both processes simul- taneously. This question is not idle since one is strong affects on ON-OFF state generations in the precession mechanism model. Since this mechanism is strong depending from the magnitude of the disk centre density and all the parameters affecting on it are very important for calculations. The matter configuration in the vicinity of one-point is one of these parameters that strong affects on ON-OFF state production and disk structure and the central disk density. By this reason we have investigated in the present paper how the disk structure is depending from the wind  configuration in the vicinity of one-point.


2021 ◽  
Vol 34 ◽  
pp. 56-58
Author(s):  
V.V. Nazarenko

The present paper is devoted to the investigation how the disk structure is depending from the one-point wind one in microquasar CYG X-1. The results show that when the region in which the wind is absent in the vicinity of one-point has the size less or equal to 0.07 the disk radius is very small, order of 0.08 in units of orbital separation. When this size is increased to 0.115 the disk radius becomes to be of standard size to be equal to 0.22 in units of orbital separation. By the other words these results show that the disk structure is strong depending from many factors including and the donor’s wind configuration in the vicinity of one-point. This configuration is inherent to microquasars only. Indeed, since microqausars are the massive close binary systems; the donor in these systems is massive star from which the strong radiation- driving wind is blowing. On the other hand, in microquasars accretion disks are present and it means that one-point stream is also present in microqausars. It in turn means that the matter configuration in the vicinity of one-point is very complicated since the high mass loss rate donor’s wind and one-point stream must be existing in the vicinity of one-point simultaneously. This situation maybe resolved when we suppose that the central source in an accretion disk will influence on the donor’s atmosphere structure in the vicinity of  one-point and in turn will be result in the break of wind in the vicinity of one-point. This finally will be means that one-point stream will be existing in one-point without a wind and it, flowing in the accretor’s Roche lobe, will be result in an accretion disk forma- tion. Here one problem is arising: what is the configuration of wind in the extended vicinity of one-point  and from what the parameters this configuration is depending and haw this configuration will be results to the disk structure change. We good understand that this situation is arising in the case of microquasars only and we try to resolve this problem in the present paper.


2020 ◽  
Vol 637 ◽  
pp. A29 ◽  
Author(s):  
S. Antonellini ◽  
A. Banzatti ◽  
I. Kamp ◽  
W.-F. Thi ◽  
P. Woitke

Context. Near-IR observations of protoplanetary disks provide information about the properties of the inner disk. High-resolution spectra of abundant molecules such as CO can be used to determine the disk structure in the warm inner parts. The v2∕v1 ro-vibrational ratio of v1−0 and v2−1 transitions has recently been observed to follow distinct trends with the CO emitting radius in a sample of TTauri and Herbig disks; these trends have empirically been interpreted as due to depletion of the inner disk from gas and dust. Aims. We use thermochemical disk models to explore the to interpret the trends of these CO ro-vibrational CO emission. Methods. We used the radiation thermochemical code ProDiMo to explore a set of previously published models with different disk properties and varying one parameter at a time: the inner radius, the dust-to-gas mass ratio, and the gas mass. In addition, we used models in which we changed the surface density power-law index, and employed a larger set of CO ro-vibrational levels that also include fluorescence from the first electronic state. We investigated these models for TTauri and Herbig star disks. Finally, we included a set of DIANA models for individual TTauri and Herbig disks that were constructed to reproduce a large set of multiwavelength observations. Results. This modeling exploration highlights promising parameters that may explain the observed trends in ro-vibrational CO emission. Our models with an increasing inner radius match the observed trend for TTauri disks, in which we were also able to account for the vertical spread in the data by different values for the dust-to-gas mass ratio and for the disk gas mass in different disks. Our models instead match the CO vibrational ratio observed in Herbig disks only in the case of large inner holes and cannot produce the low ratios that are measured in many disks. The models do produce an inversion in the trend, where v2−1∕v1−0 increases and does not decrease for CO radii larger than a few au. The reason for this is that the P(4) v2−1 line becomes optically thin and superthermally excited. In our models, this does not require invoking UV fluorescence pumping. Conclusions. Our modeling explorations suggest that the observed decrease in v2−1∕v1−0 with CO radius in TTauri disks might be a consequence of inside-out disk depletion. For the Herbig disks, a more complex inner disk structure may instead be needed to explain the observed trends in the excitation of CO emission as a function of emitting radius: disk gaps emptied of dust, partially depleted in gas, and/or possibly a disk structure with an inverted surface density profile. These structures need to be further investigated in future work.


2018 ◽  
Vol 619 ◽  
pp. A171 ◽  
Author(s):  
M. Benisty ◽  
A. Juhász ◽  
S. Facchini ◽  
P. Pinilla ◽  
J. de Boer ◽  
...  

Context. While planet formation is thought to occur early in the history of a protoplanetary disk, the presence of planets embedded in disks, or of other processes driving disk evolution, might be traced from their imprints on the disk structure. Aims. We study the morphology of the disk around the T Tauri star HD 143006, located in the ~5–11 Myr-old Upper Sco region, and we look for signatures of the mechanisms driving its evolution. Methods. We observed HD 143006 in polarized scattered light with VLT/SPHERE at near-infrared (J-band, 1.2 μm) wavelengths, reaching an angular resolution of ~0.037′′ (~6 au). We obtained two datasets, one with a 145 mas diameter coronagraph, and the other without, enabling us to probe the disk structure down to an angular separation of ~0.06′′ (~10 au). Results. In our observations, the disk of HD 143006 is clearly resolved up to ~0.5′′ and shows a clear large-scale asymmetry with the eastern side brighter than the western side. We detect a number of additional features, including two gaps and a ring. The ring shows an overbrightness at a position angle (PA) of ~140°, extending over a range in position angle of ~60°, and two narrow dark regions. The two narrow dark lanes and the overall large-scale asymmetry are indicative of shadowing effects, likely due to a misaligned inner disk. We demonstrate the remarkable resemblance between the scattered light image of HD 143006 and a model prediction of a warped disk due to an inclined binary companion. The warped disk model, based on the hydrodynamic simulations combined with three-dimensional radiative transfer calculations, reproduces all major morphological features. However, it does not account for the observed overbrightness at PA ~ 140°. Conclusions. Shadows have been detected in several protoplanetary disks, suggesting that misalignment in disks is not uncommon. However, the origin of the misalignment is not clear. As-yet-undetected stellar or massive planetary companions could be responsible for them, and naturally account for the presence of depleted inner cavities.


Sign in / Sign up

Export Citation Format

Share Document