scholarly journals Unveiling the magnetic nature of chromospheric vortices

2020 ◽  
Vol 639 ◽  
pp. A59
Author(s):  
Mariarita Murabito ◽  
Juie Shetye ◽  
Marco Stangalini ◽  
Erwin Verwichte ◽  
Tony Arber ◽  
...  

Context. Vortex structures in the Sun’s chromosphere are believed to channel energy between different layers of the solar atmosphere. Aims. We investigate the nature and dynamics of two small-scale quiet-Sun rotating structures in the chromosphere. Methods. We analysed two chromospheric structures that show clear rotational patterns in spectropolarimetric observations taken with the Interferometric Bidimensional Spectrometer at the Ca II 8542 Å line. Results. We present the detection of spectropolarimetric signals that manifest the magnetic nature of rotating structures in the chromosphere. Our observations show two long-lived structures of plasma that each rotate clockwise inside a 10 arcsec2 quiet-Sun region. Their circular polarisation signals are five to ten times above the noise level. Line-of-sight Doppler velocity and horizontal velocity maps from the observations reveal clear plasma flows at and around the two structures. A magnetohydrodynamics simulation shows these two structures are plausibly magnetically connected. Wave analysis suggests that the observed rotational vortex pattern could be due to a combination of slow actual rotation and a faster azimuthal phase speed pattern of a magnetoacoustic mode. Conclusions. Our results imply that the vortex structures observed in the Sun’s chromosphere are magnetic in nature and that they can be connected locally through the chromosphere

2020 ◽  
Vol 643 ◽  
pp. A166
Author(s):  
K. Tziotziou ◽  
G. Tsiropoula ◽  
I. Kontogiannis

Context. Vortex flows can foster a variety of wave modes. A recent oscillatory analysis of a persistent 1.7 h vortex flow with a significant substructure has suggested the existence of various types of waves within it. Aims. We investigate the nature and characteristics of waves within this quiet-Sun vortex flow, over the course of an uninterrupted 48-min observing time interval, in order to better understand its physics and dynamics. Methods. We used a cross-wavelet spectral analysis between pairs of Hα and Ca II 8542 Å intensity time series at different wavelengths and, hence, atmospheric heights, acquired with the CRisp Imaging SpectroPolarimeter at the Swedish Solar Telescope, as well as the derived Hα Doppler velocity and full width at half maximum time series. We constructed halftone frequency-phase difference plots and investigated the existence and propagation characteristics of different wave modes. Results. Our analysis suggests the existence of Alfvénic type waves within the vortex flow that propagate upwards with phase speeds of ∼20–30 km s−1. The dominant wave mode seems to be the fast kink wave mode, however, our analysis also suggests the existence of localised Alfvénic torsional waves, which are related to the dynamics of individual chromospheric swirls that characterise the substructure of the vortex flow. The Hα V–I phase difference analysis seems to imply the existence of a standing wave pattern that is possibly arising from the interference of upwards propagating kink waves with downwards propagating ones that are reflected at the transition region or the corona. Moreover, the results provide further evidence that the central chromospheric swirl drives the dynamics of the vortex flow. Conclusions. This is the first exhaustive phase difference analysis within a vortex flow that explores the nature and dynamics of different wave modes within it. The question, however, of whether, and how, the dissipation of the derived wave modes occurs remains open, and given that such structures are ubiquitous on the solar surface, it’s also important to investigate whether they might ultimately play a significant role in the energy budget of the upper layers of the solar atmosphere.


1990 ◽  
Vol 138 ◽  
pp. 129-146 ◽  
Author(s):  
Sara F. Martin

Small-scale solar features identifiable on the quiet sun in magnetograms of the line-of-sight component consist of network, intranetwork, ephemeral region magnetic fields, and the elementary bipoles of ephemeral active regions. Network fields are frequently observed to split into smaller fragments and equally often, small fragments are observed to merge or coalesce into larger clumps; this splitting and merging is generally confined to the borders and vertices of the convection cells known as supergranules. Intranetwork magnetic fields originate near the centers of the supergranule convection cells and appear to increase in magnetic flux as they flow in approximate radial patterns towards the boundaries of the cells.


2018 ◽  
Vol 616 ◽  
pp. A46 ◽  
Author(s):  
A. Pastor Yabar ◽  
M. J. Martínez González ◽  
M. Collados

The magnetism at the poles is similar to that of the quiet Sun in the sense that no active regions are present there. However, the polar quiet Sun is somewhat different from that at the activity belt as it has a global polarity that is clearly modulated by the solar cycle. We study the polar magnetism near an activity maximum when these regions change their polarity, from which it is expected that its magnetism should be less affected by the global field. To fully characterise the magnetic field vector, we use deep full Stokes polarimetric observations of the 15 648.5 and 15 652.8 Å FeI lines. We observe the north pole as well as a quiet region at disc centre to compare their field distributions. In order to calibrate the projection effects, we observe an additional quiet region at the east limb. We find that the two limb datasets share similar magnetic field vector distributions. This means that close to a maximum, the poles look like typical limb, quiet-Sun regions. However, the magnetic field distributions at the limbs are different from the distribution inferred at disc centre. At the limbs, we infer a new population of magnetic fields with relatively strong intensities (~600−800 G), inclined by ~30° with respect to the line of sight, and with an azimuth aligned with the solar disc radial direction. This line-of-sight orientation interpreted as a single magnetic field gives rise to non-vertical fields in the local reference frame and aligned towards disc centre. This peculiar topology is very unlikely for such strong fields according to theoretical considerations. We propose that this new population at the limbs is due to the observation of unresolved magnetic loops as seen close to the limb. These loops have typical granular sizes as measured in the disc centre. At the limbs, where the spatial resolution decreases, we observe them spatially unresolved, which explains the new population of magnetic fields that is inferred. This is the first (indirect) evidence of small-scale magnetic loops outside the disc centre and would imply that these small-scale structures are ubiquitous on the entire solar surface. This result has profound implications for the energetics not only of the photosphere, but also of the outer layers since these loops have been reported to reach the chromosphere and the low corona.


2003 ◽  
Vol 474 ◽  
pp. 1-33 ◽  
Author(s):  
PAOLA COSTAMAGNA ◽  
GIOVANNA VITTORI ◽  
PAOLO BLONDEAUX

The dynamics of the vortex structures appearing in an oscillatory boundary layer (Stokes boundary layer), when the flow departs from the laminar regime, is investigated by means of flow visualizations and a quantitative analysis of the velocity and vorticity fields. The data are obtained by means of direct numerical simulations of the Navier–Stokes and continuity equations. The wall is flat but characterized by small imperfections. The analysis is aimed at identifying points in common and differences between wall turbulence in unsteady flows and the well-investigated turbulence structure in the steady case. As in Jimenez & Moin (1991), the goal is to isolate the basic flow unit and to study its morphology and dynamics. Therefore, the computational domain is kept as small as possible.The elementary process which maintains turbulence in oscillatory boundary layers is found to be similar to that of steady flows. Indeed, when turbulence is generated, a sequence of events similar to those observed in steady boundary layers is observed. However, these events do not occur randomly in time but with a repetition time scale which is about half the period of fluid oscillations. At the end of the accelerating phases of the cycle, low-speed streaks appear close to the wall. During the early part of the decelerating phases the strength of the low-speed streaks grows. Then the streaks twist, oscillate and eventually break, originating small-scale vortices. Far from the wall, the analysis of the vorticity field has revealed the existence of a sequence of streamwise vortices of alternating circulation pumping low-speed fluid far from the wall as suggested by Sendstad & Moin (1992) for steady flows. The vortex structures observed far from the wall disappear when too small a computational domain is used, even though turbulence is self-sustaining. The present results suggest that the streak instability mechanism is the dominant mechanism generating and maintaining turbulence; no evidence of the well-known parent vortex structures spawning offspring vortices is found. Although wall imperfections are necessary to trigger transition to turbulence, the characteristics of the coherent vortex structures, for example the spacing of the low-speed streaks, are found to be independent of wall imperfections.


2017 ◽  
Author(s):  
Shih-Chiao Tsai ◽  
Jenn-Shyong Chen ◽  
Yen-Hsyang Chu ◽  
Ching-Lun Su ◽  
Jui-Hsiang Chen

Abstract. Multi-frequency range imaging (RIM) has been implemented in the Chung-Li very-high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 Aug, 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitations and demonstrated their different structured characteristics by means of the Capon-processed results.


2020 ◽  
Vol 638 ◽  
pp. A62 ◽  
Author(s):  
A. Nindos ◽  
C. E. Alissandrakis ◽  
S. Patsourakos ◽  
T. S. Bastian

Aims. We investigate transient brightenings, that is, weak, small-scale episodes of energy release, in the quiet solar chromosphere; these episodes can provide insights into the heating mechanism of the outer layers of the solar atmosphere. Methods. Using Atacama Large Millimeter/submillimeter Array (ALMA) observations, we performed the first systematic survey for quiet Sun transient brightenings at 3 mm. Our dataset included images of six 87″ × 87″ fields of view of the quiet Sun obtained with angular resolution of a few arcsec at a cadence of 2 s. The transient brightenings were detected as weak enhancements above the average intensity after we removed the effect of the p-mode oscillations. A similar analysis, over the same fields of view, was performed for simultaneous 304 and 1600 Å data obtained with the Atmospheric Imaging Assembly. Results. We detected 184 3 mm transient brightening events with brightness temperatures from 70 K to more than 500 K above backgrounds of ∼7200 − 7450 K. All events showed light curves with a gradual rise and fall, strongly suggesting a thermal origin. Their mean duration and maximum area were 51.1 s and 12.3 Mm2, respectively, with a weak preference of appearing at network boundaries rather than in cell interiors. Both parameters exhibited power-law behavior with indices of 2.35 and 2.71, respectively. Only a small fraction of ALMA events had either 304 or 1600 Å counterparts but the properties of these events were not significantly different from those of the general population except that they lacked their low-end energy values. The total thermal energies of the ALMA transient brightenings were between 1.5 × 1024 and 9.9 × 1025 erg and their frequency distribution versus energy was a power law with an index of 1.67 ± 0.05. We found that the power per unit area provided by the ALMA events could account for only 1% of the chromospheric radiative losses (10% of the coronal ones). Conclusions. We were able to detect, for the first time, a significant number of weak 3 mm quiet Sun transient brightenings. However, their energy budget falls short of meeting the requirements for the heating of the upper layers of the solar atmosphere and this conclusion does not change even if we use the least restrictive criteria possible for the detection of transient brightenings.


1993 ◽  
Vol 141 ◽  
pp. 192-195
Author(s):  
J. Sánchez Almeida ◽  
V. Martínez Pillet ◽  
J. Trujillo Bueno ◽  
B.W. Lites

AbstractStokes I and V profiles of Fel 630.1 nm and Fel 630.2 nm observed in a sunspot with an angular resolution ≥0.5” are analyzed. We find asymmetric V-profiles whose shapes are in agreement with previous determinations having lower angular resolution (~5”). We also find a correlation between penumbral small scale variations of continuum intensity and velocity. Although it involves smaller velocities, such correlation resembles that existing in the quiet sun as a consequence of convection.


2020 ◽  
Vol 633 ◽  
pp. A67 ◽  
Author(s):  
I. Kontogiannis ◽  
G. Tsiropoula ◽  
K. Tziotziou ◽  
C. Gontikakis ◽  
C. Kuckein ◽  
...  

Context. We study the evolution of a small-scale emerging flux region (EFR) in the quiet Sun, from its emergence in the photosphere to its appearance in the corona and its decay. Aims. We track processes and phenomena that take place across all atmospheric layers; we explore their interrelations and compare our findings with those from recent numerical modelling studies. Methods. We used imaging as well as spectral and spectropolarimetric observations from a suite of space-borne and ground-based instruments. Results. The EFR appears in the quiet Sun next to the chromospheric network and shows all morphological characteristics predicted by numerical simulations. The total magnetic flux of the region exhibits distinct evolutionary phases, namely an initial subtle increase, a fast increase with a Co-temporal fast expansion of the region area, a more gradual increase, and a slow decay. During the initial stages, fine-scale G-band and Ca II H bright points coalesce, forming clusters of positive- and negative-polarity in a largely bipolar configuration. During the fast expansion, flux tubes make their way to the chromosphere, pushing aside the ambient magnetic field and producing pressure-driven absorption fronts that are visible as blueshifted chromospheric features. The connectivity of the quiet-Sun network gradually changes and part of the existing network forms new connections with the newly emerged bipole. A few minutes after the bipole has reached its maximum magnetic flux, the bipole brightens in soft X-rays forming a coronal bright point. The coronal emission exhibits episodic brightenings on top of a long smooth increase. These coronal brightenings are also associated with surge-like chromospheric features visible in Hα, which can be attributed to reconnection with adjacent small-scale magnetic fields and the ambient quiet-Sun magnetic field. Conclusions. The emergence of magnetic flux even at the smallest scales can be the driver of a series of energetic phenomena visible at various atmospheric heights and temperature regimes. Multi-wavelength observations reveal a wealth of mechanisms which produce diverse observable effects during the different evolutionary stages of these small-scale structures.


1990 ◽  
Vol 142 ◽  
pp. 113-117
Author(s):  
F. Kneer ◽  
D. Soltau ◽  
E. Wiehr

The German solar facilities at the Obsrvatorio del Teide are described first. Then, a few examples of recent results from magnetic features are given: spatial variation and velocity fluctuation of small-scale magnetic fluxtubes in the quiet Sun, Evershed flow and magnetic field in connection with penumbral fine structure, and magnetic field variation in sunspot umbrae.


Sign in / Sign up

Export Citation Format

Share Document