scholarly journals Small-Scale Magnetic Features Observed in the Photosphere

1990 ◽  
Vol 138 ◽  
pp. 129-146 ◽  
Author(s):  
Sara F. Martin

Small-scale solar features identifiable on the quiet sun in magnetograms of the line-of-sight component consist of network, intranetwork, ephemeral region magnetic fields, and the elementary bipoles of ephemeral active regions. Network fields are frequently observed to split into smaller fragments and equally often, small fragments are observed to merge or coalesce into larger clumps; this splitting and merging is generally confined to the borders and vertices of the convection cells known as supergranules. Intranetwork magnetic fields originate near the centers of the supergranule convection cells and appear to increase in magnetic flux as they flow in approximate radial patterns towards the boundaries of the cells.

1994 ◽  
Vol 143 ◽  
pp. 217-225 ◽  
Author(s):  
Karen L. Harvey

A method to separate the active region and quiet network components of the magnetic fields in the photosphere is described and compared with the corresponding measurements of the He I λ 10830 absorption. The relation between the total He I absorption and total magnetic flux in active regions is roughly linear and differs between cycles 21 and 22. There appears to no relation between these two quantities in areas outside of active regions. The total He I absorption in the quiet Sun (comprised of network, filaments, and coronal holes) exceeds that in active regions at all times during the cycle. As a whole, active regions of cycle 22 appear to be less complex than the active regions of cycle 21, hinting at one possible cause for a differing relation between spectral-irradiance variations and the underlying magnetic flux for these two cycles.


2018 ◽  
Vol 616 ◽  
pp. A46 ◽  
Author(s):  
A. Pastor Yabar ◽  
M. J. Martínez González ◽  
M. Collados

The magnetism at the poles is similar to that of the quiet Sun in the sense that no active regions are present there. However, the polar quiet Sun is somewhat different from that at the activity belt as it has a global polarity that is clearly modulated by the solar cycle. We study the polar magnetism near an activity maximum when these regions change their polarity, from which it is expected that its magnetism should be less affected by the global field. To fully characterise the magnetic field vector, we use deep full Stokes polarimetric observations of the 15 648.5 and 15 652.8 Å FeI lines. We observe the north pole as well as a quiet region at disc centre to compare their field distributions. In order to calibrate the projection effects, we observe an additional quiet region at the east limb. We find that the two limb datasets share similar magnetic field vector distributions. This means that close to a maximum, the poles look like typical limb, quiet-Sun regions. However, the magnetic field distributions at the limbs are different from the distribution inferred at disc centre. At the limbs, we infer a new population of magnetic fields with relatively strong intensities (~600−800 G), inclined by ~30° with respect to the line of sight, and with an azimuth aligned with the solar disc radial direction. This line-of-sight orientation interpreted as a single magnetic field gives rise to non-vertical fields in the local reference frame and aligned towards disc centre. This peculiar topology is very unlikely for such strong fields according to theoretical considerations. We propose that this new population at the limbs is due to the observation of unresolved magnetic loops as seen close to the limb. These loops have typical granular sizes as measured in the disc centre. At the limbs, where the spatial resolution decreases, we observe them spatially unresolved, which explains the new population of magnetic fields that is inferred. This is the first (indirect) evidence of small-scale magnetic loops outside the disc centre and would imply that these small-scale structures are ubiquitous on the entire solar surface. This result has profound implications for the energetics not only of the photosphere, but also of the outer layers since these loops have been reported to reach the chromosphere and the low corona.


1978 ◽  
Vol 3 (3) ◽  
pp. 225-226
Author(s):  
P. R. Wilson

Since their initial discovery by Hale, the nature of solar magnetic fields has presented us with a number of problems. At one time it was thought that the field consisted of a weak background dipole field of order 1-2 G on which was superimposed the considerably more intense fields associated with active regions and sunspots. However, more recent observational studies by Harvey, Frasier, Stenflo and others have suggested that 90% of the background field appears in the form of intense small-scale fields with intensities of order 103 gauss or greater and which have remarkably similar properties whether they occur in active or quiet regions. In particular, the field intensity appears independent of the total amount of flux present but the appearance of the structure depends critically on the total flux.


1990 ◽  
Vol 138 ◽  
pp. 85-96
Author(s):  
R. Muller

Properties of the photospheric bright points associated with magnetic flux tubes are reviewed both in faculae (facular points) and in the photospheric network (network bright points - NBPs) out of active regions. A special attention is given to their size distribution, to their location relative to the granular, mesogranular and supergranular patterns, and to their relation with the small scale magnetic features, both in active and quiet regions. In particular a new granulation movie reveals that NBPs form in large intergranular spaces, compressed by the surrounding granules.At the center of the solar disk, bright points are much brighter than the mean photosphere; their contrast increases toward the limb up to μ = 0.3 − 0.2 and then decreases to the limb, as it is now widely accepted. But, all the published contrasts are of little significance because of center-to-limb selection effects. New center-to-limb contrast variations of individual network bright points are presented, which take into account the selection effects.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


1993 ◽  
Vol 141 ◽  
pp. 143-146
Author(s):  
K. Petrovay ◽  
G. Szakály

AbstractThe presently widely accepted view that the solar dynamo operates near the base of the convective zone makes it difficult to relate the magnetic fields observed in the solar atmosphere to the fields in the dynamo layer. The large amount of observational data concerning photospheric magnetic fields could in principle be used to impose constraints on dynamo theory, but in order to infer these constraints the above mentioned “missing link” between the dynamo and surface fields should be found. This paper proposes such a link by modeling the passive vertical transport of thin magnetic flux tubes through the convective zone.


1976 ◽  
Vol 71 ◽  
pp. 69-99 ◽  
Author(s):  
J. O. Stenflo

The observed properties of small-scale solar magnetic fields are reviewed. Most of the magnetic flux in the photosphere is in the form of strong fields of about 100–200 mT (1–2 kG), which have remarkably similar properties regardless of whether they occur in active or quiet regions. These fields are associated with strong atmospheric heating. Flux concentrations decay at a rate of about 107 Wb s-1, independent of the amount of flux in the decaying structure. The decay occurs by smaller flux fragments breaking loose from the larger ones, i.e. a transfer of magnetic flux from smaller to larger Fourier wave numbers, into the wave-number regime where ohmic diffusion becomes significant. This takes place in a time-scale much shorter than the length of the solar cycle.The field amplification occurs mainly below the solar surface, since very little magnetic flux appears in diffuse form in the photosphere, and the life-time of the smallest flux elements is very short. The observations further suggest that most of the magnetic flux in quiet regions is supplied directly from below the solar surface rather than being the result of turbulent diffusion of active-region magnetic fields.


2020 ◽  
Vol 633 ◽  
pp. A67 ◽  
Author(s):  
I. Kontogiannis ◽  
G. Tsiropoula ◽  
K. Tziotziou ◽  
C. Gontikakis ◽  
C. Kuckein ◽  
...  

Context. We study the evolution of a small-scale emerging flux region (EFR) in the quiet Sun, from its emergence in the photosphere to its appearance in the corona and its decay. Aims. We track processes and phenomena that take place across all atmospheric layers; we explore their interrelations and compare our findings with those from recent numerical modelling studies. Methods. We used imaging as well as spectral and spectropolarimetric observations from a suite of space-borne and ground-based instruments. Results. The EFR appears in the quiet Sun next to the chromospheric network and shows all morphological characteristics predicted by numerical simulations. The total magnetic flux of the region exhibits distinct evolutionary phases, namely an initial subtle increase, a fast increase with a Co-temporal fast expansion of the region area, a more gradual increase, and a slow decay. During the initial stages, fine-scale G-band and Ca II H bright points coalesce, forming clusters of positive- and negative-polarity in a largely bipolar configuration. During the fast expansion, flux tubes make their way to the chromosphere, pushing aside the ambient magnetic field and producing pressure-driven absorption fronts that are visible as blueshifted chromospheric features. The connectivity of the quiet-Sun network gradually changes and part of the existing network forms new connections with the newly emerged bipole. A few minutes after the bipole has reached its maximum magnetic flux, the bipole brightens in soft X-rays forming a coronal bright point. The coronal emission exhibits episodic brightenings on top of a long smooth increase. These coronal brightenings are also associated with surge-like chromospheric features visible in Hα, which can be attributed to reconnection with adjacent small-scale magnetic fields and the ambient quiet-Sun magnetic field. Conclusions. The emergence of magnetic flux even at the smallest scales can be the driver of a series of energetic phenomena visible at various atmospheric heights and temperature regimes. Multi-wavelength observations reveal a wealth of mechanisms which produce diverse observable effects during the different evolutionary stages of these small-scale structures.


1990 ◽  
Vol 142 ◽  
pp. 113-117
Author(s):  
F. Kneer ◽  
D. Soltau ◽  
E. Wiehr

The German solar facilities at the Obsrvatorio del Teide are described first. Then, a few examples of recent results from magnetic features are given: spatial variation and velocity fluctuation of small-scale magnetic fluxtubes in the quiet Sun, Evershed flow and magnetic field in connection with penumbral fine structure, and magnetic field variation in sunspot umbrae.


2017 ◽  
Vol 35 (4) ◽  
pp. 805-816 ◽  
Author(s):  
Eric Priest

Abstract. This lecture summarises how our understanding of many aspects of the Sun has been revolutionised over the past few years by new observations and models. Much of the dynamic behaviour of the Sun is driven by the magnetic field since, in the outer atmosphere, it represents the largest source of energy by far. The interior of the Sun possesses a strong shear layer at the base of the convection zone, where sunspot magnetic fields are generated. A small-scale dynamo may also be operating near the surface of the Sun, generating magnetic fields that thread the lowest layer of the solar atmosphere, the turbulent photosphere. Above the photosphere lies the highly dynamic fine-scale chromosphere, and beyond that is the rare corona at high temperatures exceeding 1 million degrees K. Possible magnetic mechanisms for heating the corona and driving the solar wind (two intriguing and unsolved puzzles) are described. Other puzzles include the structure of giant flux ropes, known as prominences, which have complex fine structure. Occasionally, they erupt and produce huge ejections of mass and magnetic fields (coronal mass ejections), which can disrupt the space environment of the Earth. When such eruptions originate in active regions around sunspots, they are also associated with solar flares, in which magnetic energy is converted to kinetic energy, heat and fast-particle energy. A new theory will be presented for the origin of the twist that is observed in erupting prominences and for the nature of reconnection in the rise phase of an eruptive flare or coronal mass ejection.


Sign in / Sign up

Export Citation Format

Share Document