scholarly journals High-Range Resolution Spectral Analysis of Precipitation Through Range Imaging of the Chung-Li VHF Radar

2017 ◽  
Author(s):  
Shih-Chiao Tsai ◽  
Jenn-Shyong Chen ◽  
Yen-Hsyang Chu ◽  
Ching-Lun Su ◽  
Jui-Hsiang Chen

Abstract. Multi-frequency range imaging (RIM) has been implemented in the Chung-Li very-high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 Aug, 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitations and demonstrated their different structured characteristics by means of the Capon-processed results.

2018 ◽  
Vol 11 (1) ◽  
pp. 581-592
Author(s):  
Shih-Chiao Tsai ◽  
Jenn-Shyong Chen ◽  
Yen-Hsyang Chu ◽  
Ching-Lun Su ◽  
Jui-Hsiang Chen

Abstract. Multi-frequency range imaging (RIM) has been operated in the Chung-Li very high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small-scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 August 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range-weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitation and demonstrated their different structured characteristics by means of the Capon-processed results. The new element in this study is the implementation of RIM on spectral analysis, especially for precipitation echoes.


2009 ◽  
Vol 26 (11) ◽  
pp. 2488-2500 ◽  
Author(s):  
Jenn-Shyong Chen ◽  
Ching-Lun Su ◽  
Yen-Hsyang Chu ◽  
Gernot Hassenpflug ◽  
Marius Zecha

Abstract Multiple-frequency range imaging (RIM), designed to improve the range resolution of radar echo distribution, is now available for the recently upgraded Chung-Li VHF radar (24.9°N, 121.1°E). To complete the RIM technique of this radar, a novel phase calibration approach, proposed initially for the Ostsee Wind (OSWIN) VHF radar, was employed to examine the effects of phase bias and the range-weighting function on the received radar echoes. The estimated phase bias indicated a time delay of ∼1.83 μs for the signal in the radar system. In contrast, such a time delay is more difficult to determine from the phase distribution of two-frequency cross-correlation functions. The same calibration approach was also applied successfully to the middle and upper atmosphere (MU) radar (34.85°N, 136.11°E) and revealed a time delay of ∼0.33 μs for the radar parameters employed. These calibration results for various radars demonstrate the general usability of the proposed calibration approach. With the high-resolution performance of RIM, some small-scale Kelvin–Helmholtz (KH) billows, double-layer structures, and plumelike structures in the troposphere that cannot be seen in height–time intensity plots have been recognized in present observations. The billows and double layers were found to be closely related to strong vertical wind shear and small Richardson number, supporting the hypothesis of a dynamic process of KH instability. On the other hand, the plumelike structures were observed to grow out of a wavy layer and could be attributed to saturation and breaking of gravity waves. These fine structures have shown some remarkable features resolved by the RIM method applied to VHF radars in the lower atmosphere.


2015 ◽  
Vol 8 (9) ◽  
pp. 10097-10120 ◽  
Author(s):  
J.-S. Chen ◽  
S.-C. Tsai ◽  
C.-L. Su ◽  
Y.-H. Chu

Abstract. Multifrequency range imaging technique (RIM) has been implemented on the Chung–Li VHF-array radar since 2008 after its renovation. This study made a more complete examination and evaluation of the RIM technique to facilitate the performance of the radar for atmospheric studies. Various experiments of RIM with different radar parameters such as pulse length, pulse shape, receiver bandwidth, transmitter frequency set, and so on, were conducted. The radar data employed for the study were collected from 2008 to 2013. It has been shown that two factors, the range/time delay of the signal traveling in the media and the standard deviation of Gaussian-shaped range-weighting function, play crucial roles in ameliorating the RIM-produced brightness (or power distribution); the two factors are associated with some radar parameters. In addition to radar parameters, long-term RIM data show that the aging of cable lines or key components of the radar system may result in an increase of the range/time delay of signal. It is also found that the range/time delay was visibly different for the echoes from the atmosphere with and without the presence of significant precipitation. A procedure of point-by-point correction of range/time delay was thus conducted to minimize the bogus brightness discontinuity at range gate boundaries. With the RIM technique, the Chung–Li VHF radar demonstrates its first successful observation of double-layer structures as well as their temporal and spatial variations with time.


2003 ◽  
Vol 3 (4) ◽  
pp. 3469-3491
Author(s):  
M. Rapp ◽  
F.-J. Lübken ◽  
T. A. Blix

Abstract. We present small scale variations of electron number densities and particle charge number densities measured in situ in the presence of polar mesosphere summer echoes. It turns out that the small scale fluctuations of electrons and negatively charged particles show a strong anticorrelation down to the smallest scales observed. Comparing these small scale structures with the simultaneously measured radar signal to noise profile, we find that the radar profile is well described by the power spectral density of both electrons and charged particles at the radar half wavelength (= the Bragg scale). Finally, we consider the shape of the power spectra of the observed plasma fluctuations and find that both charged particles and electrons show spectra that can be explained in terms of either neutral air turbulence acting on the distribution of a low diffusivity tracer or the fossil remnants of a formerly active turbulent region. All these results are consistent with the theoretical ideas by Rapp and Lübken (2003) suggesting that PMSE can be explained by a combination of active and fossil neutral air turbulence acting on the large and heavy charged aerosol particles which are subsequently mirrored in the electron number density distribution that becomes visible to a VHF radar when small scale fluctuations are present.


2014 ◽  
Vol 31 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Jenn-Shyong Chen ◽  
Ching-Lun Su ◽  
Yen-Hsyang Chu ◽  
Ruey-Ming Kuong ◽  
Jun-ichi Furumoto

Abstract Multifrequency range imaging (RIM) used with the atmospheric radars at ultra- and very high-frequency (VHF) bands is capable of retrieving the power distribution of the backscattered radar echoes in the range direction, with some inversion algorithms such as the Capon method. The retrieved power distribution, however, is weighted by the range-weighting function (RWF). Modification of the retrieved power distribution with a theoretical RWF may cause overcorrection around the edge of the sampling gate. In view of this, an effective RWF that is in a Gaussian form and varies with the signal-to-noise ratio (SNR) of radar echoes has been proposed to mitigate the range-weighting effect and thereby enhance the continuity of the power distribution at gate boundaries. Based on the previously proposed concept, an improved approach utilizing the range-oversampled signals is addressed in this article to inspect the range-weighting effects at different range locations. The shape of the Gaussian RWF for describing the range-weighting effect was found to vary with the off-center range location in addition to the SNR of radar echoes—that is, the effective RWF for the RIM was SNR and range dependent. The use of SNR- and range-dependent RWF can be of help to improve the range imaging to some degree at the range location outside the range extent of a sampling gate defined by the pulse length. To verify the proposed approach, several radar experiments were carried out with the Chung-Li (24.9°N, 121.1°E) and middle and upper atmosphere (MU; 34.85°N, 136.11°E) VHF radars.


2021 ◽  
Author(s):  
Shih-Chiao Tsai ◽  
Yen-Hsyang Chu ◽  
Jenn-Shyong Chen

Abstract. The Chung-Li very-high-frequency (VHF at 52 MHz) atmospheric radar and a dual-polarized microwave radiometer were operated collaboratively to investigate strongly convective precipitation while the typhoon Trami just passed through the Taiwan in Aug, 2013. First, respective Doppler velocities of clear-air and precipitation echoes were identified automatically by the VHF radar as clearly as possible. Two approaches were designed for this purpose: contour-based and peak-finding processes. The two approaches initially determined some major spectral centers or peaks, which were usually redundant, and then proper sifting and clustering were performed for the redundant spectral centers or peaks to yield several mean locations of Doppler velocities for profiling. The outcomes of the two approaches were consistent in general. With the estimated Doppler velocities, a tracing process was developed for Doppler profiling, in which Doppler velocity shear was one of the significant criteria in the tracing process. The radar echoes collected by the VHF radar during rainy and strongly convective atmosphere have been investigated to validate the two approaches and the tracing process. About 98 % of the tracings could identify the Doppler profiles of clear air and precipitation, even the atmosphere was disturbed severely. The radar spectral parameters, Doppler profiles, and the information from a dual-polarized microwave radiometer as well as the simulation of weather model, were examined jointly. It signified that strong updraft and turbulent atmosphere could bring the liquid water to the height above the melting layer, and then the Bergeron effect and coalescence process on formation of ice crystal and graupel above the height of the melting layer occurred accordingly.


2005 ◽  
Vol 133 (7) ◽  
pp. 2105-2112 ◽  
Author(s):  
Pavlos Kollias ◽  
Ieng Jo ◽  
Bruce A. Albrecht

Abstract Unprecedented high-resolution observations of mammatus from a profiling 94-GHz Doppler radar during the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL–FACE) are presented. Because of its high sensitivity and temporal and spatial resolution, the cloud radar used was able to resolve the fine structure of individual mammatus clouds and record significant vertical Doppler velocity perturbations (−6 to +1 m s−1). Strong perturbations of the Doppler velocity within the mammatus as it extends below the main cirrus cloud base are captured by the radar observations. Upward motions in the periphery of descending mammatus cores are documented. Areas of intense, small-scale turbulent mixing near the cirrus cloud base are identified using the Doppler spectrum width. Power spectra analysis of the mean Doppler velocity field supports the presence of gravity waves and the development of higher-frequency structures near the cirrus anvil base, where the mammatus clouds are observed. The observations provide strong evidence for dynamical forcing from coherent vertical motions 500 m above the cloud base contributing to the mammatus formation. The results are discussed in the context of suggested theories for mamma formation and morphology.


2015 ◽  
Vol 32 (9) ◽  
pp. 1581-1592 ◽  
Author(s):  
Sebastián M. Torres ◽  
Christopher D. Curtis

AbstractWSR-88D superresolution data are produced with finer range and azimuth sampling and improved azimuthal resolution as a result of a narrower effective antenna beamwidth. These characteristics afford improved detectability of weaker and more distant tornadoes by providing an enhancement of the tornadic vortex signature, which is characterized by a large low-level azimuthal Doppler velocity difference. The effective-beamwidth reduction in superresolution data is achieved by applying a tapered data window to the samples in the dwell time; thus, it comes at the expense of increased variances for all radar-variable estimates. One way to overcome this detrimental effect is through the use of range oversampling processing, which has the potential to reduce the variance of superresolution data to match that of legacy-resolution data without increasing the acquisition time. However, range-oversampling processing typically broadens the radar range weighting function and thus degrades the range resolution. In this work, simulated Doppler velocities for vortexlike fields are used to quantify the effects of range-oversampling processing on the velocity signature of tornadoes when using WSR-88D superresolution data. The analysis shows that the benefits of range-oversampling processing in terms of improved data quality should outweigh the relatively small degradation to the range resolution and thus contribute to the tornado warning decision process by improving forecaster confidence in the radar data.


2016 ◽  
Vol 9 (5) ◽  
pp. 2345-2355 ◽  
Author(s):  
Jenn-Shyong Chen ◽  
Shih-Chiao Tsai ◽  
Ching-Lun Su ◽  
Yen-Hsyang Chu

Abstract. The multifrequency range imaging technique (RIM) has been implemented on the Chung–Li VHF array radar since 2008 after its renovation. This study made a more complete examination and evaluation of the RIM technique to facilitate the performance of the radar for atmospheric studies. RIM experiments with various radar parameters such as pulse length, pulse shape, receiver bandwidth, transmitter frequency set, and so on were conducted. The radar data employed for the study were collected from 2008 to 2013. It has been shown that two factors, the range/time delay of the signal traveling in the media and the standard deviation of Gaussian-shaped range-weighting function, play crucial roles in ameliorating the RIM-produced brightness (or power distribution); the two factors are associated with some radar parameters and system characteristics. The range/time delay of the signal was found to increase with time; moreover, it was slightly different for the echoes from the atmosphere with and without the presence of significant precipitation. A procedure of point-by-point correction of range/time delay was thus executed for the presence of precipitation to minimize the bogus brightness discontinuity at range gate boundaries. With the RIM technique, the Chung–Li VHF radar demonstrates its first successful observation of double-layer structures as well as their temporal and spatial variations with time.


Sign in / Sign up

Export Citation Format

Share Document