Astrometric measurement and reduction of Pulkovo photographic observations of the main Saturnian satellites from 1972 to 2007 in the Gaia reference frame

Author(s):  
M.Yu. Khovritchev ◽  
V. Robert ◽  
N.V. Narizhnaya ◽  
T.A. Vasilyeva ◽  
A.A. Apetyan ◽  
...  
Keyword(s):  
1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


2011 ◽  
Author(s):  
Mark Mills ◽  
Stefan Van Der Stigchel ◽  
Andrew Hollingworth ◽  
Michael D. Dodd

2018 ◽  
Vol 15 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Gennaro Ruggiero ◽  
Alessandro Iavarone ◽  
Tina Iachini

Objective: Deficits in egocentric (subject-to-object) and allocentric (object-to-object) spatial representations, with a mainly allocentric impairment, characterize the first stages of the Alzheimer's disease (AD). Methods: To identify early cognitive signs of AD conversion, some studies focused on amnestic-Mild Cognitive Impairment (aMCI) by reporting alterations in both reference frames, especially the allocentric ones. However, spatial environments in which we move need the cooperation of both reference frames. Such cooperating processes imply that we constantly switch from allocentric to egocentric frames and vice versa. This raises the question of whether alterations of switching abilities might also characterize an early cognitive marker of AD, potentially suitable to detect the conversion from aMCI to dementia. Here, we compared AD and aMCI patients with Normal Controls (NC) on the Ego-Allo- Switching spatial memory task. The task assessed the capacity to use switching (Ego-Allo, Allo-Ego) and non-switching (Ego-Ego, Allo-Allo) verbal judgments about relative distances between memorized stimuli. Results: The novel finding of this study is the neat impairment shown by aMCI and AD in switching from allocentric to egocentric reference frames. Interestingly, in aMCI when the first reference frame was egocentric, the allocentric deficit appeared attenuated. Conclusion: This led us to conclude that allocentric deficits are not always clinically detectable in aMCI since the impairments could be masked when the first reference frame was body-centred. Alongside, AD and aMCI also revealed allocentric deficits in the non-switching condition. These findings suggest that switching alterations would emerge from impairments in hippocampal and posteromedial areas and from concurrent dysregulations in the locus coeruleus-noradrenaline system or pre-frontal cortex.


1988 ◽  
Vol 128 ◽  
pp. 55-60
Author(s):  
Arthur L. Whipple ◽  
Raynor L. Duncombe ◽  
Paul D. Hemenway

We have begun a program to establish a dynamical reference frame based on the motions of minor planets. The program will utilize observations from the Hubble Space Telescope, and will ultimately tie the HIPPARCOS reference system to a dynamical base. Thirty-four minor planets, 20 of which are suitable for observation with the Hubble Space Telescope, have been selected. Ground based observations, particularly crossing-point observations with long focus reflectors, have been initiated.A computer program to simultaneously solve for the corrections of the orbits of the 34 minor planets including the crossing-point observations, was successfully run. The observations are treated by the method of W. H. Jeffreys. Using simulated data, solutions with and without crossing point observations demonstrate the value of those observations to produce a homogeneous and coherent set of results.


Sign in / Sign up

Export Citation Format

Share Document