scholarly journals Detection of volatiles undergoing sublimation from 67P/Churyumov-Gerasimenko coma particles using ROSINA/COPS

2021 ◽  
Vol 645 ◽  
pp. A38
Author(s):  
B. Pestoni ◽  
K. Altwegg ◽  
H. Balsiger ◽  
N. Hänni ◽  
M. Rubin ◽  
...  

Context. The ESA Rosetta mission has allowed for an extensive in situ study of the comet 67P/Churyumov-Gerasimenko. In measurements performed by the ram gauge of the COmet Pressure Sensor (COPS), observed features are seen to deviate from the nominal ram gauge signal. This effect is attributable to the sublimation of the volatile fraction of cometary icy particles containing volatiles and refractories. Aims. The objective of this work is to investigate the volatile content of icy particles that enter the COPS ram gauge. Methods. We inspected the ram gauge measurements to search for features associated with the sublimation of the volatile component of cometary particles impacting the instrument. All the sublimation features with a high-enough signal-to-noise ratio were modelled by fitting one or more exponential decay functions. The parameters of these fits were used to categorise different compositions of the sublimating component. Results. Based on features that are attributable to ice sublimation, we infer the detection of 73 icy particles containing volatiles. Of these, 25 detections have enough volatile content for an in-depth study. From the values of the exponential decay constants, we classified the 25 inferred icy particles into three types, interpreted as different volatile compositions, which are possibly further complicated by their differing morphologies. The available data do not give any indication as to which molecules compose the different types. Nevertheless, we can estimate the total volume of volatiles, which is expressed as the diameter of an equivalent sphere of water (density of 1 g cm−3). This result was found to be on the order of hundreds of nanometres.

Author(s):  
M. G. G. T. Taylor ◽  
N. Altobelli ◽  
B. J. Buratti ◽  
M. Choukroun

The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov–Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016. This article is part of the themed issue ‘Cometary science after Rosetta’.


Author(s):  
C. Snodgrass ◽  
M. F. A'Hearn ◽  
F. Aceituno ◽  
V. Afanasiev ◽  
S. Bagnulo ◽  
...  

We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov–Gerasimenko from before Rosetta's arrival until nearly the end of the mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively ‘well-behaved’ comet, typical of Jupiter family comets and with activity patterns that repeat from orbit to orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends—in this paper, we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies. This article is part of the themed issue ‘Cometary science after Rosetta’.


2019 ◽  
Vol 630 ◽  
pp. A4 ◽  
Author(s):  
T. Kramer ◽  
M. Läuter

Context. Cometary activity affects the orbital motion and rotation state through sublimation-induced forces. The availability of precise rotation-axis orientation and position data from the Rosetta mission allows us to accurately determine the outgassing of comet Churyumov-Gerasimenko/67P (67P). Aims. We derived the observed non-gravitational acceleration of 67P directly from the trajectory of the Rosetta spacecraft. From the non-gravitational acceleration, we recovered the diurnal outgassing variations and study a possible delay of the sublimation response with respect to the peak of the solar illumination. This allowed us to compare the non-gravitational acceleration of 67P with expectations based on empirical models and common assumptions about the sublimation process. Methods. We used an iterative orbit refinement and Fourier decomposition of the diurnal activity to derive the outgassing-induced non-gravitational acceleration. The uncertainties of the data reduction were established by a sensitivity analysis of an ensemble of best-fit orbits for comet 67P. Results. We find that the Marsden non-gravitational acceleration parameters reproduce part of the non-gravitational acceleration, but need to be augmented by an analysis of the nucleus geometry and surface illumination to draw conclusions about the sublimation process on the surface. The non-gravitational acceleration closely follows the subsolar latitude (seasonal illumination), with a small lag angle with respect to local noon around perihelion. The observed minor changes of the rotation axis do not favor forced precession models for the non-gravitational acceleration. Conclusions. In contrast to the sublimation-induced torques, the non-gravitational acceleration does not place strong constraints on localized active areas on the nucleus. We find a close agreement of the orbit-deduced non-gravitational acceleration and the water production that is independently derived from Rosetta in situ measurements.


2019 ◽  
Vol 489 (1) ◽  
pp. 594-607 ◽  
Author(s):  
Martin Rubin ◽  
Kathrin Altwegg ◽  
Hans Balsiger ◽  
Jean-Jacques Berthelier ◽  
Michael R Combi ◽  
...  

ABSTRACT Comets are considered to be some of the most pristine and unprocessed Solar system objects accessible to in situ exploration. Investigating their molecular and elemental composition takes us on a journey back to the early period of our Solar system and possibly even further. In this work, we deduce the bulk abundances of the major volatile species in comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency’s (ESA) Rosetta mission. The basis are measurements obtained with the ROSINA instrument suite on board the Rosetta orbiter during a suitable period of high outgassing near perihelion. The results are combined with both gas and dust composition measurements published in the literature. This provides an integrated inventory of the major elements present in the nucleus of 67P/Churyumov-Gerasimenko. Similar to comet 1P/Halley, which was visited by ESA’s Giotto spacecraft in 1986, comet 67P/Churyumov-Gerasimenko also shows near-solar abundances of oxygen and carbon, whereas hydrogen and nitrogen are depleted compared to solar. Still, the degree of devolatilization is lower than that of inner Solar system objects, including meteorites and the Earth. This supports the idea that comets are amongst the most pristine objects in our Solar system.


2018 ◽  
Vol 618 ◽  
pp. A77 ◽  
Author(s):  
K. L. Heritier ◽  
M. Galand ◽  
P. Henri ◽  
F. L. Johansson ◽  
A. Beth ◽  
...  

Context.The Rosetta spacecraft provided us with a unique opportunity to study comet 67P/Churyumov–Gerasimenko (67P) from a close perspective and over a 2-yr time period. Comet 67P is a weakly active comet. It was therefore unexpected to find an active and dynamic ionosphere where the cometary ions were largely dominant over the solar wind ions, even at large heliocentric distances.Aims.Our goal is to understand the different drivers of the cometary ionosphere and assess their variability over time and over the different conditions encountered by the comet during the Rosetta mission.Methods.We used a multi-instrument data-based ionospheric model to compute the total ion number density at the position of Rosetta. In-situ measurements from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) and the Rosetta Plasma Consortium (RPC)–Ion and Electron Sensor (IES), together with the RPC–LAngmuir Probe instrument (LAP) were used to compute the local ion total number density. The results are compared to the electron densities measured by RPC–Mutual Impedance Probe (MIP) and RPC–LAP.Results.We were able to disentangle the physical processes responsible for the formation of the cometary ions throughout the 2-yr escort phase and we evaluated their respective magnitudes. The main processes are photo-ionization and electron-impact ionization. The latter is a significant source of ionization at large heliocentric distance (>2 au) and was predominant during the last 4 months of the mission. The ionosphere was occasionally subject to singular solar events, temporarily increasing the ambient energetic electron population. Solar photons were the main ionizer near perihelion at 1.3 au from the Sun, during summer 2015.


2020 ◽  
Author(s):  
Nora Hänni ◽  
Kathrin Altwegg ◽  
Boris Pestoni ◽  
Martin Rubin ◽  
Isaac Schroeder ◽  
...  

<p>For a long time it was thought that the cyano (CN) radical, observed remotely many times in various stellar and interstellar environments, is exclusively a photodissociation product of hydrogen cyanide (HCN). Bockelée-Morvan et al. (1984) first questioned this notion based on remote observations of comet IRAS-Araki-Alcock. They reported an upper limit for the HCN production rate which was smaller than the CN production rate previously derived by A’Hearn et al. (1983). Even today, this discrepancy observed for some comets is not resolved although many alternative parents have been suggested. Among the volatile candidates, cyanogen (NCCN), cyanoacetylene (HC<sub>3</sub>N) and acetonitrile (CH<sub>3</sub>CN), according to Fray et al. (2005), are the most promising ones. While cyanoacetylene and acetonitrile are known to be present in trace amounts in comets, as reported for comet Hale-Bopp by Bockelée-Morvan et al. (2000) and for comet 67P/Churyumov-Gerasimenko by Le Roy et al. (2015) and Rubin et al. (2019), the abundance of cyanogen in comets is unknown. Altwegg et al. (2019) were the first to mention its detection in the inner coma of comet 67P/Churyumov-Gerasimenko, target of ESA’s Rosetta mission.</p> <p>In this work, we track the signatures of cyanogen in the ROSINA/DFMS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/ Double Focusing Mass Spectrometer; Balsiger et al. (2007)) data, collected during the Rosetta mission phase. We derive abundances relative to water for three distinct periods, indicating that cyanogen is not abundant enough to explain the CN production in comet 67P together with HCN. Our findings are consistent with the non-detection of cyanogen in the interstellar medium.</p> <p> </p> <p>A’Hearn M.F., Millis R.L., 1983, IAU Circ., 3802</p> <p>Altwegg K., Balsiger H., Fuselier S.A., 2019, Annu. Rev. Astron. Astrophys., 57, 113–55</p> <p>Balsiger H. et al., 2007, Space Science Reviews, 128, 745-801</p> <p>Bockelée-Morvan D., Crovisier J., Baudry A., Despois D., Perault M., Irvine W.M., Schloerb F.P., Swade D., 1984, Astron. Astrophys., 141, 411-418</p> <p>Bockelée-Morvan et al., 2000, Astron. Astrophys., 353, 1101–1114.</p> <p>Fray N., Bénilan Y., Cottin H., Gazeau M.-C., Crovisier J., 2005, Planetary and Space Science, 53, 1243-1262</p> <p>Le Roy L. et al., 2015, Astron. Astrophys., 583, A1</p> <p>Rubin M. et al., 2019, MNRAS, 489, 594-607</p>


2019 ◽  
Vol 630 ◽  
pp. A36 ◽  
Author(s):  
Cyril Simon Wedlund ◽  
Etienne Behar ◽  
Esa Kallio ◽  
Hans Nilsson ◽  
Markku Alho ◽  
...  

Context. Solar wind charge-changing reactions are of paramount importance to the physico-chemistry of the atmosphere of a comet because they mass-load the solar wind through an effective conversion of fast, light solar wind ions into slow, heavy cometary ions. The ESA/Rosetta mission to comet 67P/Churyumov-Gerasimenko (67P) provided a unique opportunity to study charge-changing processes in situ. Aims. To understand the role of charge-changing reactions in the evolution of the solar wind plasma and to interpret the complex in situ measurements made by Rosetta, numerical or analytical models are necessary. Methods. An extended analytical formalism describing solar wind charge-changing processes at comets along solar wind streamlines is presented. It is based on a thorough book-keeping of available charge-changing cross sections of hydrogen and helium particles in a water gas. Results. After presenting a general 1D solution of charge exchange at comets, we study the theoretical dependence of charge-state distributions of (He2+, He+, He0) and (H+, H0, H−) on solar wind parameters at comet 67P. We show that double charge exchange for the He2+−H2O system plays an important role below a solar wind bulk speed of 200 km s−1, resulting in the production of He energetic neutral atoms, whereas stripping reactions can in general be neglected. Retrievals of outgassing rates and solar wind upstream fluxes from local Rosetta measurements deep in the coma are discussed. Solar wind ion temperature effects at 400 km s−1 solar wind speed are well contained during the Rosetta mission. Conclusions. As the comet approaches perihelion, the model predicts a sharp decrease of solar wind ion fluxes by almost one order of magnitude at the location of Rosetta, forming in effect a solar wind ion cavity. This study is the second part of a series of three on solar wind charge-exchange and ionization processes at comets, with a specific application to comet 67P and the Rosetta mission.


Author(s):  
A.-Ch. Levasseur-Regourd ◽  
Yann Brouet ◽  
Edith Hadamcik

Polarimetric astronomical observations on dust clouds and regolithic surfaces require laboratory simulations on samples to provide clues to properties of the scattering media. Similarly, in-situ radar investigations of Solar System bodies require laboratory studies to infer the physical properties of their interiors. Recent developments are illustrated by analyses of comet 67P/Churyumov-Gerasimeko (C-G) remote observations and in-situ studies from Rosetta mission.


2019 ◽  
Vol 32 (23) ◽  
pp. 8087-8109 ◽  
Author(s):  
Mark D. Risser ◽  
Christopher J. Paciorek ◽  
Travis A. O’Brien ◽  
Michael F. Wehner ◽  
William D. Collins

Abstract The gridding of daily accumulated precipitation—especially extremes—from ground-based station observations is problematic due to the fractal nature of precipitation, and therefore estimates of long period return values and their changes based on such gridded daily datasets are generally underestimated. In this paper, we characterize high-resolution changes in observed extreme precipitation from 1950 to 2017 for the contiguous United States (CONUS) based on in situ measurements only. Our analysis utilizes spatial statistical methods that allow us to derive gridded estimates that do not smooth extreme daily measurements and are consistent with statistics from the original station data while increasing the resulting signal-to-noise ratio. Furthermore, we use a robust statistical technique to identify significant pointwise changes in the climatology of extreme precipitation while carefully controlling the rate of false positives. We present and discuss seasonal changes in the statistics of extreme precipitation: the largest and most spatially coherent pointwise changes are in fall (SON), with approximately 33% of CONUS exhibiting significant changes (in an absolute sense). Other seasons display very few meaningful pointwise changes (in either a relative or absolute sense), illustrating the difficulty in detecting pointwise changes in extreme precipitation based on in situ measurements. While our main result involves seasonal changes, we also present and discuss annual changes in the statistics of extreme precipitation. In this paper we only seek to detect changes over time and leave attribution of the underlying causes of these changes for future work.


Sign in / Sign up

Export Citation Format

Share Document