scholarly journals Steady state by recycling prevents premature collapse of protoplanetary atmospheres

2021 ◽  
Vol 646 ◽  
pp. L11
Author(s):  
T. W. Moldenhauer ◽  
R. Kuiper ◽  
W. Kley ◽  
C. W. Ormel

Context. In recent years, space missions such as Kepler and TESS have discovered many close-in planets with significant atmospheres consisting of hydrogen and helium: mini-Neptunes. This indicates that these planets formed early in gas-rich disks while avoiding the runaway gas accretion that would otherwise have turned them into hot-Jupiters. A solution is to invoke a long Kelvin-Helmholtz contraction (or cooling) timescale, but it has also been suggested that thermodynamical cooling can be prevented by hydrodynamical planet atmosphere-disk recycling. Aims. We investigate the efficacy of the recycling hypothesis in preventing the collapse of the atmosphere, check for the existence of a steady state configuration, and determine the final atmospheric mass to core mass ratio. Methods. We use three-dimensional radiation-hydrodynamic simulations to model the formation of planetary proto-atmospheres. Equations are solved in a local frame centered on the planet. Results. Ignoring small oscillations that average to zero over time, the simulations converge to a steady state where the velocity field of the gas becomes constant in time. In a steady state, the energy loss by radiative cooling is fully compensated by the recycling of the low entropy gas in the planetary atmosphere with high entropy gas from the circumstellar disk. Conclusions. For close-in planets, recycling naturally halts the cooling of planetary proto-atmospheres, preventing them from contracting toward the runaway regime and collapsing into gas giants.

2022 ◽  
Vol 924 (1) ◽  
pp. 9
Author(s):  
Tim Hallatt ◽  
Eve J. Lee

Abstract The sub-Saturn (∼4–8 R ⊕) occurrence rate rises with orbital period out to at least ∼300 days. In this work we adopt and test the hypothesis that the decrease in their occurrence toward the star is a result of atmospheric mass loss, which can transform sub-Saturns into sub-Neptunes (≲4 R ⊕) more efficiently at shorter periods. We show that under the mass-loss hypothesis, the sub-Saturn occurrence rate can be leveraged to infer their underlying core mass function, and, by extension, that of gas giants. We determine that lognormal core mass functions peaked near ∼10–20 M ⊕ are compatible with the sub-Saturn period distribution, the distribution of observationally inferred sub-Saturn cores, and gas-accretion theories. Our theory predicts that close-in sub-Saturns should be ∼50% less common and ∼30% more massive around rapidly rotating stars; this should be directly testable for stars younger than ≲500 Myr. We also predict that the sub-Jovian desert becomes less pronounced and opens up at smaller orbital periods around M stars compared to solar-type stars (∼0.7 days versus ∼3 days). We demonstrate that exceptionally low-density sub-Saturns, “super-puffs,” can survive intense hydrodynamic escape to the present day if they are born with even larger atmospheres than they currently harbor; in this picture, Kepler 223 d began with an envelope ∼1.5× the mass of its core and is currently losing its envelope at a rate of ∼2 × 10−3 M ⊕ Myr−1. If the predictions from our theory are confirmed by observations, the core mass function we predict can also serve to constrain core formation theories of gas-rich planets.


2019 ◽  
Vol 490 (3) ◽  
pp. 3144-3157 ◽  
Author(s):  
William Béthune

Abstract Planet formation scenarios can be constrained by the ratio of the gaseous envelope mass relative to the solid core mass in the observed exoplanet populations. One-dimensional calculations find a critical (maximal) core mass for quasi-static envelopes to exist, suggesting that envelopes around more massive cores should collapse due to a ‘core-nucleated’ instability. We study self-gravitating planetary envelopes via hydrodynamic simulations, progressively increasing the dimensionality of the problem. We characterize the core-nucleated instability and its non-linear evolution into runaway gas accretion in one-dimensional spherical envelopes. We show that rotationally supported envelopes can enter a runaway accretion regime via polar shocks in a two-dimensional axisymmetric model. This picture remains valid for high-mass cores in three dimensions, where the gas gravity mainly adds up to the core gravity and enhances the mass accretion rate of the planet in time. We relate the core-nucleated instability to the absence of equilibrium connecting the planet to its parent disc and discuss its relevance for massive planet formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanho Moon ◽  
Kotaro Yamasaki ◽  
Yoshihiko Nagashima ◽  
Shigeru Inagaki ◽  
Takeshi Ido ◽  
...  

AbstractA tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.


Sign in / Sign up

Export Citation Format

Share Document