Changes in age and maturity of anadromous whitefish (Coregonus lavaretus) in the northern Baltic Sea from 1998 to 2014

2021 ◽  
Vol 34 ◽  
pp. 9
Author(s):  
Lari Veneranta ◽  
Irma Kallio-Nyberg ◽  
Irma Saloniemi ◽  
Erkki Jokikokko

The maturation of anadromous whitefish (Coregonus lavaretus) was analysed from samples taken from commercial coastal fishing in 1998–2014 in the Gulf of Bothnia. Whitefish matured at a younger age from year to year. The proportion of older (5–12 sea years) mature males decreased from 79% to 39% in the northern Gulf of Bothnia (66°N–64°N) and from 76% to 14% in southern (64°N–60°30'N) during the study period. At the same time, the proportion of young males (2–4 sea years) increased. Whitefish matured younger: the proportion of mature fish at age four increased in both the north and south among females (13% → 98%; 6% → 85%) and males (68% → 99%; 29% → 89%). The catch length of four-year-old fish increased during the study period in both sexes. In contrast, the length of six-year-old females decreased from year to year. Sea surface temperatures increased during the study period, and were possibly associated with a decrease in the age of maturation and faster growth.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ndague Diogoul ◽  
Patrice Brehmer ◽  
Hervé Demarcq ◽  
Salaheddine El Ayoubi ◽  
Abou Thiam ◽  
...  

AbstractThe resistance of an east border upwelling system was investigated using relative index of marine pelagic biomass estimates under a changing environment spanning 20-years in the strongly exploited southern Canary Current Large marine Ecosystem (sCCLME). We divided the sCCLME in two parts (north and south of Cap Blanc), based on oceanographic regimes. We delineated two size-based groups (“plankton” and “pelagic fish”) corresponding to lower and higher trophic levels, respectively. Over the 20-year period, all spatial remote sensing environmental variables increased significantly, except in the area south of Cap Blanc where sea surface Chlorophyll-a concentrations declined and the upwelling favorable wind was stable. Relative index of marine pelagic abundance was higher in the south area compared to the north area of Cap Blanc. No significant latitudinal shift to the mass center was detected, regardless of trophic level. Relative pelagic abundance did not change, suggesting sCCLME pelagic organisms were able to adapt to changing environmental conditions. Despite strong annual variability and the presence of major stressors (overfishing, climate change), the marine pelagic ressources, mainly fish and plankton remained relatively stable over the two decades, advancing our understanding on the resistance of this east border upwelling system.


2020 ◽  
Author(s):  
Dong-Jin Kang ◽  
Sang-Hwa Choi ◽  
Daeyeon Kim ◽  
Gyeong-Mok Lee

<p>Surface seawater carbon dioxide was observed from 3 °S to 27 °S along 67 °E of the Indian Ocean in April 2018 and 2019. Partial pressure of CO<sub>2</sub>(pCO<sub>2</sub>) in the surface seawater and the atmosphere were observed every two minutes using an underway CO2 measurement system (General Oceanics Model 8050) installed on R/V Isabu. Surface water temperature and salinity were measured as well. The pCO<sub>2</sub> was measured using Li-7000 NDIR. Standard gases were measured every 8 hours in five classes with concentrations of 0 µatm, 202 µatm, 350 µatm, 447 µatm, and 359.87 µatm. The fCO<sub>2</sub> of atmosphere remained nearly constant at 387 ± 2 µatm, but the surface seawater fCO<sub>2</sub> peaked at about 3 °S and tended to decrease toward the north and south. The distribution of fCO<sub>2</sub> in surface seawater according to latitude tends to be very similar to that of sea surface temperature. In order to investigate the factors that control the distribution of fCO<sub>2</sub> in surface seawater, we analyzed the sea surface temperature, sea surface salinity, and other factors. The effects of salinity are insignificant, and the surface fCO<sub>2</sub> distribution is mainly controlled by sea surface temperature and other factors that can be represented mainly by biological activity and mixing.</p>


2015 ◽  
Vol 26 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Henry Hägerstrand ◽  
Mikael Himberg ◽  
Erkki Jokikokko ◽  
Mikael von Numers ◽  
Lucyna Mrówczyńska ◽  
...  

2021 ◽  
Author(s):  
Veronica Gonzalez Gambau ◽  
Estrella Olmedo ◽  
Cristina Gonzalez Haro ◽  
Antonio Turiel ◽  
Aina Garcia ◽  
...  

<p>The Baltic Sea is a strongly stratified semi-enclosed sea with a large freshwater supply from rivers, net precipitation and water exchange and high-saline water from the North Sea through the Kattegat Strait. In the Danish Straits the water exchange is hampered by bathymetric constraints , such as narrow and shallow sills, and by hydrodynamic restrictions, such as fronts and mixing. The shallow depth of the Baltic Sea (i.e. 54 m in average) yields to highly variable ocean dynamics controlled mainly by local atmospheric forcing. The water exchange between the Baltic Sea and the North Atlantic Ocean is restricted by the narrows and sills of the Danish Straits (i.e. via Kattergat Strait at the East of the Baltic Sea) and by different river outflows distributed across the Baltic Sea. The bottom water in the deep sub-basins is ventilated mainly by large perturbations, so-called major Baltic saltwater inflows. The occurrence of these events needs still further investigation. The description of the complex oceanographic conditions within the Baltic Sea in current model simulations could also be developed. Furthermore, model simulations of the Baltic Sea are constrained to the initialization of the model (i.e. parametrization of the initial surface atmospheric and ocean conditions).</p><p>For this, the Earth Observation salinity measurements have a great potential to help in the understanding of the dynamics in the basin and to improve the regional models there. However, the Baltic Sea is one of the most challenging regions for the sea surface salinity (SSS) retrieval from satellite measurements. The available EO-based SSS products are quite limited over this region both in terms of spatio-temporal coverage and quality. This is mainly due to several technical limitations that strongly affect the satellite brightness temperatures (TB) measurements, particularly over semi-enclosed seas, such as the high contamination by Radio-Frequency Interferences (RFI) and the contamination close to land and ice edges. Besides, the sensitivity of TB to SSS changes is very low in cold waters and much larger errors are expected compared to temperate oceans.</p><p>As a main result of the ESA Baltic+ Salinity Dynamics project (<span></span>), a new regional SSS product derived from the measurements provided by the European Soil Moisture and Ocean Salinity (SMOS) mission has been developed. In this work, first, we describe briefly the enhanced algorithms used in the generation of SMOS SSS fields. Second, we show a complete quality assessment by comparing the satellite and the in situ salinity measurements. For this, we use in situ measurements provided by SeaDataNet and Helcom and Ferry box lines. Finally, we compare the satellite salinity measurements with the salinity fields provided by a model. We focus our analysis in two aspects: i) the description of the freswater fluxes coming from continental discharge and sea-ice melting; and ii) the capability of describing the dynamics of the saltier Atlantic water that enters into the basin through the Kattegat strait.</p><p> </p>


Author(s):  
Ahmad Fadlan ◽  
Denny Nugroho Sugianto ◽  
Kunarso ◽  
Muhammad Zainuri

Sign in / Sign up

Export Citation Format

Share Document