scholarly journals Breeding of bread wheat for leaf rust resistance in Russia

2020 ◽  
Vol 18 ◽  
pp. 00013 ◽  
Author(s):  
Elena Gultyaeva

Leaf rust, caused by the fungus Puccinia triticina Erikss., is one of the most common diseases of wheat in Russia. The paper reviews Lr-genes diversity in Russian commercial wheat varieties. Two hundred and sixty-four winter and one hundred and forty-three spring wheat varieties indexed by the State Register of Breeding Achievements in 2005-2018 were studied. It was found that among new varieties, as many as 5% of winter wheat and 30% of spring wheat possess effective seedling resistance. The wide presence of Lr19 and Lr9 genes was detected in the spring wheat. Besides, the high resistance to leaf rust was found in spring wheat varieties with new alien Lr genes (originated from Thinopyrum intermedium (Host) Barkworth & D.R. Dewey and Aegilops speltoides Tausch. Over 40% of winter wheat varieties have different levels of field resistance as well. The molecular screening revealed three varieties with effective adult plant resistance gene Lr37. Other winter wheat varieties include a range of ineffective genes (Lr1, Lr3, Lr10, Lr26, and Lr34), alone or in various combinations.

Plant Disease ◽  
2021 ◽  
Author(s):  
Subhash Chander Bhardwaj ◽  
Subodh Kumar ◽  
Om Prakash Gangwar ◽  
Pramod Prasad ◽  
Prem Lal Kashyap ◽  
...  

Wheat is the second most cultivated cereal in the world and is equally important in India. Leaf (brown) rust, caused by Puccinia triticina, was most prevalent among the three rusts in all the wheat-growing areas of India, Bhutan, and Nepal during 2016 to 2019. Leaf rust samples from wheat crops in these countries were pathotyped using the wheat differential genotypes and binomial Indian system of nomenclature. To facilitate international communication, each pathotype identified was also tested on the North American differentials. A total of 33 pathotypes were identified from 1,086 samples, including 3 new pathotypes, 61R47 (162-5 = KHTDM) and 93R49 (49 = NHKTN) from India and 93R57 (20-1 = NHKTL) from Nepal. Two pathotypes, 121R60-1 (77-9/52 = MHTKL) and 121R63-1 (77-5 = THTTM), accounted for 79.46% of the population. Virulence on Lr19 was identified in 0.27% of the samples and from Nepal only. The proportion of pathotype 121R60-1 (77-9 = MHTKL) increased during these years to 57.55%. Virulence was not observed to Lr9, Lr24, Lr25, Lr28, Lr32, Lr39, Lr45, and Lr47 in the population of the Indian subcontinent. Eighteen polymorphic simple sequence repeat (SSR) primer pairs tested on the isolates amplified 48 alleles with an average of 2.66 alleles per primer pair. Based on SSR genotyping, these pathotypes could be grouped into two clades with further two subclades each. Many of the Lr genes present in Indian wheat germplasm (Lr1, Lr3a, Lr10, Lr11, Lr14a, Lr15, Lr16, Lr17, Lr20, Lr23, and Lr26) were ineffective to a majority of the pathotypes. Most of these varieties possessed a high degree of leaf rust resistance. The field resistance of wheat varieties could be attributed to the interaction of genes, unknown resistance, or adult plant resistance.


2009 ◽  
Vol 35 (3) ◽  
pp. 168-171 ◽  
Author(s):  
G. V. Volkova ◽  
T. P. Alekseeva ◽  
L. K. Anpilogova ◽  
M. V. Dobryanskaya ◽  
O. F. Vaganova ◽  
...  

1994 ◽  
Vol 74 (2) ◽  
pp. 231-233 ◽  
Author(s):  
P. L. Dyck ◽  
E. E. Sykes

The inheritance of leaf-rust resistance was studied in three accessions of spelt wheat (Triticum aestivum ssp. spelta L.). Accession 7831 has a gene for seedling resistance to leaf rust that is linked with Lr33 (5.4 ± 1.05%), which is known to he on the long arm of chromosome 1B. This gene, which was either recessive or partially dominant, is designated Lr44, and because of its field reaction, should be useful in breeding rust-resistant wheats. Accession 7839 may also have this gene and an additional gene that in the seedling stage conditioned a type 2 infection to many races but little field resistance. Accessions 7831, 7839 and 7825 also have possibly in common a gene for adult-plant resistance. This gene, which did not give a high level of field resistance, was independent of Lr12, Lr13, Lr22, Lr34 and Lr35, other genes for adult-plant resistance. Key words:Triticum, wheat, leaf-rust resistance


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 628-632 ◽  
Author(s):  
J. A. Kolmer

Leaf rust, caused by the fungus Puccinia triticina, is an important disease of soft red winter wheat cultivars that are grown in the southern and eastern United States. The objectives of this study were to identify the leaf rust resistance genes in two soft red winter wheat cultivars, Coker 9663 and Pioneer 26R61, that have been widely grown and were initially highly resistant to leaf rust. Both cultivars were crossed with the leaf-rust-susceptible spring wheat cv. Thatcher and the F1 plants were crossed to Thatcher to obtain backcross (BC1) F2 families. In seedlings, the Thatcher/Coker 9663 BC1F2 families segregated for three independent seedling resistance genes when tested with different leaf rust isolates. The leaf rust infection types of selected BC1F3 lines, when tested with different leaf rust isolates, indicated that seedling resistance genes Lr9, Lr10, and Lr14a were present. In field plot tests, BC1F4 lines that were seedling susceptible had some adult plant resistance to leaf rust. Seedlings of the Thatcher/Pioneer 26R61 BC1F2 families segregated for two independent resistance genes. Infection types of selected BC1F3 lines indicated the presence of Lr14b and Lr26. The adult plant gene Lr13 was determined to be present in selected BC1F4 lines that were tested with different leaf rust isolates in greenhouse tests.


Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 757-760 ◽  
Author(s):  
J. Q. Liu ◽  
J. A. Kolmer

The hard red spring wheat cultivar AC Domain and the Canada Prairie Spring wheat AC Taber have recently been licensed and released in western Canada and are resistant to leaf rust caused by Puccinia recondita f. sp. tritici. To determine the genetic basis of this resistance, the two cultivars were crossed with the leaf rust susceptible wheat Thatcher (Tc), and F1 plants were backcrossed to Thatcher. F2 families from Tc*2/AC Domain and AC Taber/Tc*2 were tested with isolates of P. recondita f. sp. tritici as seedlings in the greenhouse and as adults in the field rust nursery. Segregation of BC1F2 families indicated that AC Domain had seedling resistance genes Lr10 and Lr16, and the adult plant gene Lr34. AC Domain was also hypothesized to have the adult plant gene Lr12 based on infection types with P. recondita f. sp. tritici isolates that differed for virulence to Lr12. The effective field leaf rust resistance of AC Domain was conditioned by Lr16 and Lr34. Segregation of BC1F2 families and infection types of BC1F3-derived BC1F4 plants indicated that AC Taber had Lr14a for seedling resistance, the adult plant gene Lr13, plus an additional uncharacterized adult plant resistance gene currently designated as LrTb.


2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


Sign in / Sign up

Export Citation Format

Share Document