scholarly journals Genetics of Leaf Rust Resistance in Canadian Spring Wheats AC Domain and AC Taber

Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 757-760 ◽  
Author(s):  
J. Q. Liu ◽  
J. A. Kolmer

The hard red spring wheat cultivar AC Domain and the Canada Prairie Spring wheat AC Taber have recently been licensed and released in western Canada and are resistant to leaf rust caused by Puccinia recondita f. sp. tritici. To determine the genetic basis of this resistance, the two cultivars were crossed with the leaf rust susceptible wheat Thatcher (Tc), and F1 plants were backcrossed to Thatcher. F2 families from Tc*2/AC Domain and AC Taber/Tc*2 were tested with isolates of P. recondita f. sp. tritici as seedlings in the greenhouse and as adults in the field rust nursery. Segregation of BC1F2 families indicated that AC Domain had seedling resistance genes Lr10 and Lr16, and the adult plant gene Lr34. AC Domain was also hypothesized to have the adult plant gene Lr12 based on infection types with P. recondita f. sp. tritici isolates that differed for virulence to Lr12. The effective field leaf rust resistance of AC Domain was conditioned by Lr16 and Lr34. Segregation of BC1F2 families and infection types of BC1F3-derived BC1F4 plants indicated that AC Taber had Lr14a for seedling resistance, the adult plant gene Lr13, plus an additional uncharacterized adult plant resistance gene currently designated as LrTb.

Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 505-508 ◽  
Author(s):  
J. Q. Liu ◽  
J. A. Kolmer

The hard red spring wheat cultivars Grandin and CDC Teal were genetically examined to determine the number and identity of the leaf rust resistance genes present in both wheats. The two cultivars were crossed with the leaf rust susceptible cultivar Thatcher, and the F1 plants were backcrossed to Thatcher. Fifty-four and 80 BC1F1 plants derived respectively from Grandin and CDC Teal were selfed to produce BC1F2 families. The BC1F2 families were tested as seedlings with isolates of Puccinia recondita f. sp. tritici that differed for virulence to specific leaf rust resistance genes. The BC1F2 families were also tested in the adult-plant stage in field rust nursery tests. Segregation of BC1F2 families in the seedling tests indicated that Grandin had resistance genes Lr2a, Lr3, and Lr10, and was heterogeneous for Lr16. CDC Teal was shown to have the seedling leaf rust gene Lr1. In field rust nursery tests, both Grandin and CDC Teal were shown to have adult-plant resistance genes Lr13 and Lr34. Additional leaf rust resistance genes that condition effective field resistance should be incorporated into hard red spring wheat cultivars to diversify the leaf rust resistance in this wheat class.


2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


1988 ◽  
Vol 68 (3) ◽  
pp. 633-639 ◽  
Author(s):  
P. L. DYCK ◽  
O. M. LUKOW

Gene Lr29 transferred from Agropyron elongatum to chromosome 7D of wheat and gene LrVPM transferred from VPM1 both segregated as single genes for seedling resistance to leaf rust when backcrossed into common wheat (Triticum aestivum). Although the seedling resistance of the VPM lines was intermediate, their adult plant resistance was excellent. This resistance was not on chromosome 7D. The VPM lines also had seedling and adult plant resistance to stem rust. Resistant backcross lines with either Lr29 or LrVPM had higher kernel protein levels than did susceptible sister lines under both rust and rust-free conditions. Although this higher protein content was associated with weaker dough mixing properties, the remix loaf volume remained constant. Leaf rust infection had a detrimental effect on grain yield and kernel weight and on wheat quality as shown by decreased kernel protein content and farinograph absorption. Dough mixing strength was higher for the rust infected lines than the rust resistant lines.Key words: Triticum aestivum, wheat (spring), leaf rust resistance, protein content, breadmaking quality


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1127-1133 ◽  
Author(s):  
L. M. Oelke ◽  
J. A. Kolmer

Leaf rust, caused by Puccinia triticina Eriks., is the most common disease of wheat (Triticum aestivum L.) in the United States and worldwide. The objective of this study was to characterize seedling and adult plant leaf rust resistance in hard red spring wheat cultivars grown in Minnesota, North Dakota, and South Dakota, and postulate the identity of the seedling leaf rust resistance genes in the cultivars. Twenty-six cultivars, near-isogenic lines of Thatcher wheat that differ for single leaf rust resistance genes, and three wheat cultivars with known leaf rust resistance genes, were tested with 11 different isolates of leaf rust collected from the United States and Canada. The leaf rust infection types produced on seedling plants of the cultivars in greenhouse tests were compared with the infection types produced by the same isolates on the Thatcher near-isogenic lines to postulate which seedling leaf rust resistance genes were present. Seedling leaf rust resistance genes Lr1, Lr2a, Lr10, Lr16, Lr21, and Lr24 were postulated to be present in spring wheat cultivars. Seedling genes Lr3, Lr14a, and Lr23 likely were present in some cultivars but could not be clearly identified in this study. Most of the cultivars had some level of adult plant leaf rust resistance, most likely due to Lr34. Cultivars that had seedling resistance genes Lr1, Lr2a, Lr10, or Lr16 had poor to intermediate levels of leaf rust resistance in field plots. Cultivars with combinations of seedling resistance genes Lr16 and Lr24 with additional adult plant resistance were highly resistant to leaf rust.


Genome ◽  
1994 ◽  
Vol 37 (5) ◽  
pp. 813-822 ◽  
Author(s):  
R. L. Innes ◽  
E. R. Kerber

Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.Key words: Triticum tauschii, rust resistance, gene expression, gene transfer, wheat, synthetic hexaploid.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1484
Author(s):  
Alma Kokhmetova ◽  
Shynbolat Rsaliyev ◽  
Makpal Atishova ◽  
Madina Kumarbayeva ◽  
Angelina Malysheva ◽  
...  

Leaf rust, caused by Puccinia triticina (Ptr), is a significant disease of spring wheat spread in Kazakhstan. The development of resistant cultivars importantly requires the effective use of leaf rust resistance genes. This study aims to: (i) determine variation in Ptr population using races from the East Kazakhstan, Akmola, and Almaty regions of Kazakhstan; (ii) examine resistance during seedling and adult plant stages; and (iii) identify the sources of Lr resistance genes among the spring wheat collection using molecular markers. Analysis of a mixed population of Ptr identified 25 distinct pathotypes. Analysis of these pathotypes using 16 Thatcher lines that are near-isogenic for leaf rust resistance genes (Lr) showed different virulence patterns, ranging from least virulent “CJF/B” and “JCL/G” to highly virulent “TKT/Q”. Most of the pathotypes were avirulent to Lr9, Lr19, Lr24, and Lr25 and virulent to Lr1, Lr2a, Lr3ka, Lr11, and Lr30. The Ptr population in Kazakhstan is diverse, as indicated by the range of virulence observed in five different races analyzed in this study. The number of genotypes showed high levels of seedling resistance to each of the five Ptr races, thus confirming genotypic diversity. Two genotypes, Stepnaya 62 and Omskaya 37, were highly resistant to almost all five tested Ptr pathotypes. Stepnaya 62, Omskaya 37, Avangard, Kazakhstanskaya rannespelaya, and Kazakhstanskaya 25 were identified as the most stable genotypes for seedling resistance. However, most of the varieties from Kazakhstan were susceptible in the seedling stage. Molecular screening of these genotypes showed contrasting differences in the genes frequencies. Among the 30 entries, 22 carried leaf rust resistance gene Lr1, and two had Lr9 and Lr68. Lr10 and Lr28 were found in three and four cultivars, respectively. Lr19 was detected in Omskaya 37. Two single cultivars separately carried Lr26 and Lr34, while Lr37 was not detected in any genotypes within this study. Field evaluation demonstrated that the most frequent Lr1 gene is ineffective. Kazakhstanskaya 19 and Omskaya 37 had the highest number of resistance genes: three and four Lr genes, respectively. Two gene combinations (Lr1, Lr68) were detected in Erythrospermum 35 and Astana. The result obtained may assist breeders in incorporating effective Lr genes into new cultivars and developing cultivars resistant to leaf rust.


2020 ◽  
Vol 18 ◽  
pp. 00013 ◽  
Author(s):  
Elena Gultyaeva

Leaf rust, caused by the fungus Puccinia triticina Erikss., is one of the most common diseases of wheat in Russia. The paper reviews Lr-genes diversity in Russian commercial wheat varieties. Two hundred and sixty-four winter and one hundred and forty-three spring wheat varieties indexed by the State Register of Breeding Achievements in 2005-2018 were studied. It was found that among new varieties, as many as 5% of winter wheat and 30% of spring wheat possess effective seedling resistance. The wide presence of Lr19 and Lr9 genes was detected in the spring wheat. Besides, the high resistance to leaf rust was found in spring wheat varieties with new alien Lr genes (originated from Thinopyrum intermedium (Host) Barkworth & D.R. Dewey and Aegilops speltoides Tausch. Over 40% of winter wheat varieties have different levels of field resistance as well. The molecular screening revealed three varieties with effective adult plant resistance gene Lr37. Other winter wheat varieties include a range of ineffective genes (Lr1, Lr3, Lr10, Lr26, and Lr34), alone or in various combinations.


1981 ◽  
Vol 61 (1) ◽  
pp. 145-146
Author(s):  
A. B. CAMPBELL ◽  
E. M. CZARNECKI

Benito is an early maturing cultivar with four genes for leaf rust resistance. It is adapted to the rust area of Manitoba and eastern Saskatchewan.


1971 ◽  
Vol 13 (3) ◽  
pp. 480-483 ◽  
Author(s):  
P. L. Dyck ◽  
E. R. Kerber

Genes Lr10 and Lr16 for seedling resistance and gene Lr12 for adult-plant resistance to leaf rust in common wheat were located on specific chromosomes by monosomic analysis using the Rescue monosomic series. Gene Lr10 is on chromosome 1A and genes Lr12 and Lr16 are on chromosome 4A. The latter two genes must be more than 50 crossover units apart since they segregated independently. These three genes were backcrossed into Thatcher from the variety Exchange. The variety Chinese Spring probably carries gene Lr12.


Sign in / Sign up

Export Citation Format

Share Document